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UNIVERSITÉ DU MAINE (CORRECTION DU PARTIEL, L3)

EXERCICE 1 On remarque que la fonction d’autocorrélation décroît de façon géométrique
et que la fonction d’autocorrélation partielle est nulle à partir du rang deux. Ces fonctions
sont donc générées par un processus ARMA(p,q) avec p = 1 et q = 0, il s’agit d’un processus
autorégressif d’ordre 1. Nous savons que la fonction d’autocorrélation d’un AR(1) est de la
forme :

ρ(h) = ρh

pour tout h > 0. Clairement le paramètre autorégressif est égal à 0,7. On ne peut rien dire
de la variance de l’innovation du processus stochastique.

EXERCICE 2 Commençons par écrire la vraisemblance conditionnelle du processus AR(1).
Notons YT = {y1, . . . , yT } l’échantillon disponible. Le processus générateur des données et
de la forme :

yt = ρyt−1 + εt

avec εt un bruit blanc Gaussien d’espérance nulle et de variance σ2
ε que nous supposerons

connue (c’est-à-dire que nous ne cherchons pas à estimer). La vraisemblance est la densité
de l’échantillon :

L(ρ;YT ) = p(y1, . . . , yT )

Puisque les yt ne sont pas indépendants, il n’est pas possible d’écrire cette densité jointe
comme un produit de densités marginales. Mais en utilisant le théorème de Bayes, on peut
écrire cette densité jointe comme un produit de densité conditionnelle :

L(ρ;YT ) = p(yT |yT−1, . . . , y1)p(yT−1|yt−2, . . . , y1) . . . p(yt|yt−1, . . . , y1) . . . p(y2|y1)

ou, puisque yt ne dépend que de yt−1, de façon équivalente :

L(ρ;YT ) = p(yT |yT−1)p(yT−1|yt−2) . . . p(yt|yt−1) . . . p(y2|y1)

soit de façon plus ramassée :

L(ρ;YT ) =

T∏
t=2

p(yt|yt−1)

Or nous savons que :
yt|yt−1 ∼ N

(
ρyt−1, σ

2
ε

)
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et que donc la densité conditionnelle de yt|yt−1 est :

p(yt|yt−1) =
1

σε

√
2π

e
− 1

2σ2
ε
(yt−ρyt−1)

2

En substituant dans l’expression de la vraisemblance, on obtient :

L(ρ;YT ) =

T∏
t=2

1

σε

√
2π

e
− 1

2σ2
ε
(yt−ρyt−1)
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ou de façon équivalente :

L(ρ;YT ) =
(
2πσ2

ε

)−T−1
2 e

− 1
2σ2

ε

∑T
t=2(yt−ρyt−1)
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maximiser la vraisemblance par rapport à ρ revient à minimiser la somme sous l’exponen-
tielle. C’est précisément l’objectif des MCO puisque l’on reconnaît ici la somme des carrés
des résidus. L’estimateur des MCO, obtenu en minimisant la somme des carrés des résidus
ou en maximisant la vraisemblance conditionnelle, est :

ρ̂T =

∑T
t=2 ytyt−1∑T
t=2 y

2
t−1

EXERCICE 3 Soit {yt, t ∈ Z} un ARMA(1, 1) de la forme :

yt =
1

2
yt−1 + εt −

1

3
εt−1

avec εt un bruit blanc d’espérance nulle et de variance 1. (1) Ce processus est asymptoti-
quement stationnaire et inversible car les racines des polynôme retards de la partie auto-
régressive et de la partie moyenne mobile (2 et 3) sont supérieures à un en module. (2) Si
les conditions initiales sont telles que le processus stochastique est stationnaire au second
ordre, alors les moments d’ordre un et deux sont invariants. Dans la suite on exploite cette
propriété. (3) Appliquons l’opérateur espérance à la définition du processus stochastique :

E[yt] =
1

2
E[yt−1] + E[εt]−

1

3
E[εt−1]

Par définition de εt, il vient :

E[yt] =
1

2
E[yt−1]

puisque le moment d’ordre un est invariant, on a encore :

E[yt] =
1

2
E[yt]

et donc
E[yt] = 0

2



(4) En multipliant l’équation qui définit le processus stochastique par yt puis en appliquant
l’opérateur espérance, il vient :

E[y2t ] =
1

2
E[ytyt−1] + E[ytεt]−

1

3
E[ytεt−1]

c’est-à-dire, par définition de la fonction d’autocovariance :

γ(0) =
1

2
γ(1) + E[ytεt]−

1

3
E[ytεt−1]

En substituant la définition de yt dans les deux derniers termes :

γ(0) =
1

2
γ(1) + E

[(
1

2
yt−1 + εt −

1

3
εt−1

)
εt

]
− 1

3
E
[(

1

2
yt−1 + εt −

1

3
εt−1

)
εt−1

]
En développant (sachant que E[εtεs] = 0 pour tout t ̸= s et E[εtyt−s] = 0 pour tout s > 0
car εt est une innovation), il vient :

γ(0) =
1

2
γ(1) + σ2

ε +
1

9
σ2
ε −

1

6
E [yt−1εt−1]

⇔ γ(0) =
1

2
γ(1) + σ2

ε +
1

9
σ2
ε −

1

6
σ2
ε

γ(0) =
1

2
γ(1) +

17

18
σ2
ε

En multipliant l’équation qui définit le processus stochastique par yt−1 puis en appliquant
l’opérateur espérance, il vient :

γ(1) =
1

2
γ(0) + E[yt−1εt]−

1

3
E[yt−1εt−1]

⇔ γ(1) =
1

2
γ(0)− 1

3
σ2
ε

Les autocovariances γ(0) et γ(1) sont donc la solution d’un système de deux équations
linéaires : {

γ(0) = 1
2γ(1) +

17
18σ

2
ε

γ(1) = 1
2γ(0)−

1
3σ

2
ε

En substituant la seconde équation dans la première, on obtient :

γ(0) =
28

27
σ2
ε

puis en substituant ce résultat dans la seconde équation :

γ(1) =
5

27
σ2
ε

(5) En multipliant l’équation qui définit le processus stochastique par yt−2 puis en appli-
quant l’opérateur espérance, il vient :

γ(2) =
1

2
γ(1) + E[yt−2εt]−

1

3
E[yt−2εt−1]
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⇔ γ(2) =
1

2
γ(1)

et donc :
γ(2) =

5

54
σ2
ε

(6) Plus généralement, on a :

γ(h) =
1

2
γ(h− 1)

pour tout h ≥ 2. À partir de l’ordre deux, la fonction d’autocorrélation est gouvernée par
la partie autorégressive du processus stochastique.

EXERCICE 4 Soit le processus ARMA(2,2) stationnaire :

yt = c+ φ1yt−1 + φ2yt−2 + εt − θ1εt−1 − θ2εt−2

où εt est un bruit blanc d’espérance nulle et de variance σ2. En appliquant l’opérateur
espérance il vient :

E [yt] = c+ φ1E [yt−1] + φ2E [yt−2]

puisque εt est une variable aléatoire d’espérance nulle. Comme l’espérance est invariante,
on a encore :

E [yt] = c+ φ1E [yt] + φ2E [yt]

soit de façon équivalente :
E [yt] =

c

1− φ1 − φ2

En multipliant l’équation qui définit l’ARMA(2,2) par zt = yt − E [yt] (le processus centré)
puis en appliquant l’espérance, il vient :

γ(0) = φ1γ(1) + φ2γ(2) + E [ztεt]− θ1E [ztεt−1]− θ2E [ztεt−2]

⇔ γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε

− θ1E [(φ1zt−1 + φ2zt−2 + εt − θ1εt−1 − θ2εt−2) εt−1]

− θ2E [(φ1zt−1 + φ2zt−2 + εt − θ1εt−1 − θ2εt−2) εt−2]

⇔ γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε − θ1φ1σ

2
ε + θ21σ

2
ε − θ2φ2σ

2
ε + θ22σ

2
ε

− θ2φ1E [zt−1εt−2]

⇔ γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε − θ1φ1σ

2
ε + θ21σ

2
ε − θ2φ2σ

2
ε + θ22σ

2
ε

− θ2φ1E [(φ1zt−2 + φ2zt−3 + εt−1 − θ1εt−2 − θ2εt−3) εt−2]

⇔ γ(0) = φ1γ(1) + φ2γ(2) + σ2
ε − θ1φ1σ

2
ε + θ21σ

2
ε − θ2φ2σ

2
ε + θ22σ

2
ε − θ2φ

2
1σ

2
ε + θ2θ1φ1σ

2
ε

⇔ γ(0) = φ1γ(1) + φ2γ(2) +
(
1 + θ21 + θ22 − θ1φ1 − θ2φ2 − θ2φ

2
1 + θ2θ1φ1

)
σ2
ε
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Nous avons une expression de l’autocovariance d’ordre zéro en fonction des autocova-
riances d’ordre un et deux inconnues. Il nous reste à obtenir des expressions pour ces mo-
ments. En multipliant l’équation qui définit l’ARMA(2,2) centré par zt−1 puis en appliquant
l’espérance, il vient :

γ(1) = φ1γ(0) + φ2γ(1) + E [zt−1εt]− θ1E [zt−1εt−1]− θ2E [zt−1εt−2]

⇔ (1− φ2)γ(1) = φ1γ(0)− θ1σ
2
ε − θ2E [(φ1zt−2 + φ2zt−3 + εt−1 − θ1εt−2 − θ2εt−3) εt−2]

⇔ γ(1) =
φ1

1− φ2
γ(0) +

θ2θ1 − θ1 − θ2φ1

1− φ2
σ2
ε

En suivant la même démarche, on trouve aussi :

γ(2) = φ1γ(1) + φ2γ(0)− θ2σ
2
ε

Nous disposons donc d’un système à trois équations – trois inconnues pour γ(0), γ(1) et
γ(2). Les autocovariances suivantes sont données par :

γ(h) = φ1γ(h− 1) + φ2γ(h− 2)

À partir du rang trois, la fonction d’autocovariance est déterminée à partir de la partie
autorégressive du processus ARMA(2,2). Après quelques manipulations que je n’ai pas le
courage de reporter ici, j’obtiens :

γ(0) =
φ1(1 + φ2)(θ2θ1 − θ1 − θ2φ1)− (1− φ2)

[
1 + θ21 + θ22 − θ1φ1 − θ2φ

2
1 + θ2θ1φ1

]
1− φ2 − φ2

1 − φ2
2 − φ2(φ1 − φ2)(φ1 + φ2)

σ2
ε

On déduit facilement γ(1) et γ(2)
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