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Summary 

Determining the order of an autoregressive-moving average process is an important and difficult 
part of time series analysis. Often time series analysts follow the Box-Jenkins approach to time 
series modelling. This approach relies somewhat on the subjective judgement of the analyst. Many 
other less heuristic methods have been proposed and used in the literature. In this survey the most 
important of these order determination methods are reviewed and their theoretical and practical 
relevance are discussed. 

Key words: Akaike's information criterion; Bayesian methods; Corner method; Cross-validation; 
Extended autocorrelations; Final prediction error; Generalized partial correlations; Inverse autocorre- 
lations; Lagrange multiplier test; S- and R-arrays. 

1 Introduction 

Autoregressive moving average models of order (p, q), which are often abbreviated to 
ARMA(p, q) models, are frequently used to describe and forecast time series observations. 
These models are commonly expressed as: 

Op(B)y,= Oq(B)a,, (1.1) 

where B is a backward shift operator such that Bmy, = 
y,-m 

for any integer m, 

p q 
6O(B) = 1- O 

j,- 
Oq(B)= 1 - 

0,B i=1 j=1 

are polynomial operators such that 4,(B)O,(B) has its roots outside the unit circle and 
{a,: t = 0, ?1, ?2, .. .} is a sequence of independent and identically distributed normal 
random variables with E(a,)= 0 and E(a2) = cr2. Such a sequence is referred to as a white 
noise sequence. The y,'s may in general represent the dth difference or any other suitable 
transformation of some nonstationary time series. 

In recent years the topic of order determination or specification has attracted considera- 
ble attention in the time series literature and in those research areas of control theory, 
econometrics and statistics which are closely related to time series analysis. Specifying the 
model means finding estimates of the order (p, q) of the process. If these estimates are 
available the parameters 4 = (4 ,..., 4,~p), 0 = (0, ..., Oq) and or- can then be estimated. 
We are not concerned with the latter here, although some of the methods do require 
estimation of the parameters of different models which can then be compared. The 'true' 
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302 J.G. DE GOOIJER et al. 

order of a process is rarely, if ever, known and a difficult and delicate part of time series 
analysis then is the selection, based on a finite set of observations, of the order (p, q) of 
the process to be fitted. It often happens that the selected model is a simplification of the 
true model which usually is complicated. What is assumed and hoped is that it adequately 
describes the underlying process and that it may be potentially useful for some purpose. 

Various methods have been proposed and explored in the literature, but still many 
practitioners usually follow the Box-Jenkins approach to time series modelling. To a very 
large extent this method is based on making inferences from the patterns of the sample 
autocorrelation and partial autocorrelation functions of the series. The characteristic 
properties of the corresponding theoretical functions for various types of ARMA models are 
used hereby as a reference; see, for example, Box & Jenkins (1976, Ch. 3). This approach 
relies heavily on the heuristic judgement of the time series analyst. Choosing the 
appropriate order of a process by making inferences from the patterns of the sample 
autocorrelation function is usually difficult and hence alternative methods have been 
proposed. 

Although there exists no universal panacea to the question of determining the order of 
a time series model from empirical data, a large number of procedures has been put forth 
to choose the most appropriate model structure. In this survey we describe the main 
features of what seem to be the most useful ones. Our study does not have the pretention 
of being exhaustive. Neither is it an attempt to cover the whole of the literature on the 
technical details of the methods which, in some cases, can be very extensive. The aim is to 
give the broad framework of the most important order-determination techniques, used in 
time series analysis today. References will be given so that more detailed examination of 
particular techniques can be made from the original papers. 

We acknowledge that there have been other studies with a similar objective. They differ 
from the present investigation in that they are restricted to linear regression models 
and/or focus on a more limited range of order determination procedures. Excellent 
surveys of the most important methods for the selection of the order of linear regression 
models are given by Amemiya (1980) and Geweke & Meese (1981). For a good 
fundamental treatment of the theory of econometric model selection, we refer to the 
unpublished Ph.D. thesis by Sawyer (1980). In time series analysis Rudra (1954) presents 
a snapshot picture of the state of the art up to 1954. Akaike (1974), van den Boom & van 
den Enden (1974) and Unbehauen & G6hring (1974) give more up-to-date, though rather 
limited, reviews on the literature of univariate time series model specification. 

One way to classify the different methods is to assign to them one of the properties 
'objective' or 'subjective'. For a subjective method there is always a decision to be made 
by man. This may be the choice of some significance level or the examination of graphs 
and tables to look for a characteristic pattern in the behaviour of a particular statistic. An 
objective method may be characterized by the fact that there is no necessary involvement 
of a human element in the modelling process. 

This classification should not be taken too seriously since the existence of objectively 
defined methods does not eliminate the possibility of the use of judgement or critical use 
of the methods. However, it provides a convenient way to further group order determina- 
tion methods in these two classes according to a relevant feature of the approach to the 
problem. In particular the class of subjective methods can be broadly divided into the 
following two subclasses: those methods which make use of the theory of statistical 
hypothesis testing and those which are based on deterministic or stochastic realization 
theory. In ?? 2 and 3 we describe the main features of some of the most relevant order- 
determination procedures in these subclasses. 

Within the class of objective methods we can group order determination methods as 
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The Order of an Autoregressive-Moving Average Process 303 

those based on (i) the one-step-ahead prediction error, (ii) information measures and (iii) 
Bayesian methods. These are discussed in ?? 4-6 and their relationships are considered in 
? 7. Section 8 contains some final remarks. 

2 Methods based upon the theory of statistical hypothesis testing 
One of the most frequently occurring problems in statistical inference is to decide, on the 

basis of a finite number of observations, whether a set of parameters 0 satisfies s 
independent restrictions h(0) = 0 (i = 1,..., s), where hi(0) denotes some linear or 
nonlinear function of 0 for which the derivatives exist. This general problem can be 
formulated as one of hypothesis testing where the null hypothesis h(03) = 0 (i = 1,..., s) is 
tested versus the alternative 0 is unrestricted. Several suitable statistics have evolved to 
test these hypotheses: in particular, the likelihood ratio (LR), Wald (w) and Lagrange 
multiplier (LM) test statistics. 

One case of particular interest of the above testing problem is when the null hypothesis 
is that s of the parameters, involved in the specification of the model, take specified 
values. All the tests proposed in time series model building apply to this situation. Suppose 
that, for the sake of simplicity and without loss of generality, all these restricted 
parameters are equal to zero. Thus, if the parameter vector 0 is partitioned as (30', f2)', 
the null hypothesis Ho may be taken as 32= (0,... ,0)'. Then under H0, each of the test 
statistics LR, W and LM has an asymptotically X2 distribution with s degrees of freedom. 

It is clear from the above discussion that Ho is nested within the alternative hypothesis 
by the restriction 32 = (0 .... ,0)'. The hypotheses implicit in such a nest form a uniquely 
ordered set and this enables a sequential testing procedure to be carried out. T.W. 
Anderson (1963; 1971, pp. 34-43, 116-134, 270-276) presented a sequential testing 
procedure for determining the order of a Gaussian distributed AR process. A number L is 
specified such that the true order is known to be less than or equal to L and the following, 
mutually exclusive hypotheses are tested sequentially 

Hl: 4L=0 

H2: 'L = =L-1 = 0 
(2.1) 

H•LL =L-1 
= ..= = 0. 

If any of these hypotheses is true, the preceding hypotheses must be true, and if any of 
these hypotheses is false the succeeding ones are false. In the latter case the testing 
procedure terminates. 

It is worth noting that the probability of making a type I error (reject a given model 
structure when it is the true one) in such a sequential testing procedure differs from the 
significance level assigned to each hypothesis. 

The tests employed in the sequential procedure (2.1) may be based on the likelihood 
ratio, Wald or Lagrange multiplier principles. As for the LR test, Whittle (1954) shows 
that for testing the two nested hypotheses H0: the assumed model is an sth-order 
autoregression (s = 0, 1,..., L - 1), against HI: the given time series realization is gener- 
ated by an AR(L) process, the LR test statistic becomes approximately 

LR= c(n)log (62~2/), (2.2) 

where 62 and 62 are the maximum likelihood estimates of cr2 under Ho and H1, 
respectively. The quantity c(n) in (2.2) is a function of the sample size; one usually takes 
c(n) = -(n - L); see Whittle (1952) for an alternative representation. A poor fit of the two 
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assumed models to the data corresponds to a large negative value of (2.2) and therefore 
rejection of Ho. Again the test statistic (2.2) follows an asymptotically X2 distribution with 
L - s degrees of freedom under Ho, for Gaussian distributed data. 

Anderson (1971, p. 216) suggested a statistic based on testing the null hypothesis 
s+l 

' 

-= qL = 0 (s = 0, 1,...,L - 1) in an AR(L) model. Let RL be an L x L matrix 
partitioned into s and L - s rows and columns and the parameter vector 4 correspond- 
ingly ,A [ R12 (1) 

R 

- ----- 
0, 

- ----- 
LR12: R21J' 1L() 1 

where the (i, j)th element of RL is the sample autocorrelation function 
ri-i, 

defined by 
n-k n 

rk t•' t +k Ey (k= 1,..., 
n - 

1), t= 1 t=l 

and where q is the vector of estimates of the parameters in the AR(L) model. Then the 
statistic 

no(2)'[R2- RR2 R1R12(2)/A2 (2.3) 

is the Wald test statistic. The Lagrange multiplier test statistic for this case can be 
obtained in a similar way; see Hosking (1980) for several alternative representations of 
the LM test for general ARMA models. 

Replacing the parameters 4, in (2.1) by 6O, the sequential testing procedure may also be 
used for testing hypotheses in pure MA models. The selection of the order can be based on 
either of the three previously discussed test statistics. Unfortunately, the sequential testing 
procedure has two serious drawbacks. The first is that it may take a relatively large order 
of the pure AR or pure MA model to approximate, in an appropriate way, a particular time 
series. This could lead to an overparametrized model and thus violate the principle of 
parsimony. The second drawback is the difficulty in choosing the significance level. 
Although the sequential testing procedure is designed to satisfy certain clearly defined 
optimality conditions, the choice of this significance level cannot be made, as it should be, 
on the basis of a suitable trade-off between probabilities of type I and type II errors 
(accept a false model structure) since the latter are unknown for the tests considered here. 

The sequential testing procedure (2.1) starts from the most general, or least restrictive, 
hypothesis and tests successively more restricted hypotheses. Anderson (1971) shows that 
such a procedure is uniformly most powerful in the class of procedures that fix the 
probabilities of accepting a less restricted hypothesis than the true one. Clearly, an 
alternative way of sequentially testing hypotheses is to start off from the most restricted 
hypothesis and apply the procedure (2.1) in the reverse order. It is obvious that this 
approach has computational advantages, especially if the more general models are allowed 
to include highly nonlinear structures. However, it should be noted that, in general, the 
test statistics will not be independent and hence this approach may have a low power. 

When the data are supposed to be generated by an ARMA process there may not be any 
obvious way in which the ARMA model is likely to be deficient nor any obvious alternative 
hypothesis to consider. Consequently, no unique ordering of hypotheses is possible and a 
sequential testing procedure is no longer applicable under such circumstances. One can 
overcome this problem by approximating an ARMA model by an AR or MA model of 
sufficiently high order, so that the true model can be assumed to be nested within this 
approximate model, or take p = q. One can also accept the lack of unique ordering in the 
hypotheses and proceed by applying sequential testing procedures within each ordered 
nest. In the latter case, it is necessary to apply one of the available tests for discrimination 
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between nonnested hypotheses, see MacKinnon (1983) for a review, in order to select the 
final model choice from the set consisting of the preferred models from each ordered nest. 

Many applications of the above mentioned tests can be found in the literature. For 
instance, Zellner & Palm (1974) use the LR test to appraise alternative hypotheses in a 
small dynamic simultaneous equation model of the U.S. economy. Hsiao (1979a) uses the 
LR test to investigate the appropriateness of a bivariate AR model of Canadian money and 
income data. The small-sample properties of two Student t-tests are compared with the LR 
and w tests for an MA(1) model by Nelson & Shea (1979). Newbold (1983) uses the LM test 
to build an ARMA model for the money supply and gross national product of the U.S. Most 
other applications of these three tests have been confined to linear regression model 
specifications; see e.g. Breusch (1978) and Breusch & Pagan (1980). Finally, we shall 
mention that a test for nonnested ARMA models is discussed by Walker (1967). 

3 Methods based on deterministic or stochastic realization theory 

Many of the procedures for order selection require the estimation of the model 
parameters at each stage, the calculation of some measure of goodness of fit, and a 
comparison with previous steps over all possible choices of the order (p, q). Needless to 
say that such an approach may be quite involved for higher order processes and 
computationally rather expensive. We now consider some procedures which do not 
require prior model fitting. We will do this for each method separately. Recently, Piccolo 
& Tunnicliffe-Wilson (1984) have shown that several of the methods reviewed here have a 
common basis which allows for a unified approach to ARMA model identification. For more 
details about this approach we refer to their paper. 

3.1 Inverse autocorrelations and partial autocorrelations 

Chatfield (1979), see also Cleveland (1972), puts forward arguments in favour of using 
inverse autocorrelations (iac) instead of the autocorrelations in the Box-Jenkins proce- 
dure. The kth lag inverse autocovariance, denoted by yi(k), can be defined as the 
coefficient of Bk in the generating function Fi(B) = yi(k)Bk, where the sum is over 
k=-m,..., X, which satisfies Fi(B)F(B)= 1, where F(B) is the autocovariance generating 
function. The function Fi(B) is usually referred to as the inverse autocovariance generat- 
ing function and Fi(B)/yi(O) as the inverse autocorrelation generating function. It can be 
shown that for the ARMA(p, q) process (1.1), 

4Fi(B) = 
(B) 4O(B-1) 1 

--i(B)= . (3.1) Oq (B)Oq(B-1) o(. 

This implies that the kth lag inverse autocorrelation for an AR(p) process is given by 

p-kk + c+ (k p), 
i(k))= i=1 i=1 (3.2) 

0 (k > p). 

Thus in the autoregressive case pi(k) has a cut-off after lag p. This property makes it a 
competitor for the partial autocorrelations. However, the estimation of pi(k) is not easy. 
One method of estimating the iac of a series is to approximate the series by an AR process 
of 'sufficiently' high order, to estimate its parameters using the Yule-Walker equations, 
see Box & Jenkins (1976, Ch. 3), and then use the above equations (3.2) to estimate the 
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inverse autocorrelations. Bhansali (1980) has derived the asymptotic distributional prop- 
erties of the sample inverse autocorrelations. In particular, he has shown that for a white 
noise process the sample inverse autocorrelations are asymptotically normally distributed 
with mean zero and variance 1/n. Hence, significance of the iac at the 5% level can be 
checked by comparing them with the values 1-96/n'. 

An alternative function known as the inverse partial autocorrelation function (ipacf) has 
also been discussed in the literature, see Chatfield (1979), as a specification tool. This may 
be defined as the partial autocorrelation function for the inverse model 0,(B)y, = OP(B)a,. 
These can be computed from the Yule-Walker equations by replacing the autocorrela- 
tions with the inverse autocorrelations. The behaviour of ipacf is similar to the autocorre- 
lation function. However, its usefulness is limited because of estimation difficulties. 

For a more complete discussion on this subject we refer to Bhansali (1980, 1983a), 
Hipel, McLeod & Lennox (1977) and Abraham & Ledolter (1984). McLeod, Hipel & 
Lennox (1977) give examples of the use of the inverse autocorrelation function in time 
series model identification. 

3.2 R- and S-arrays 

Gray, Kelley & McIntire (1978) have proposed another method of using the autocorre- 
lations to identify the order (p, q) of an ARMA process. Their method primarily exploits the 
presence of certain patterns in two arrays of numbers, called the R- and S-arrays. The 
(i, j)th elements of these arrays are given by 

Ri(pi) =Hi(pi)/Hi(1; pi), Si(pi)=HH,+(1; p)/H>i(pi) (3.3) 

respectively, where the jth and (j+1)th order determinants Hj(pL) and H(1; pi) are 
defined as 

Pi Pi+1 ... Pi+i-1 1 1 ... 1 

Ij(pi)= Pi+I 
Pi+2 *--* Pi+i , Hi+1(1; pi)= Pi Pi+1 ... Pi+i 

Pi+i-1 Pi+i - - - 
Pi+2j-2 Pi+i-1 Pi+i ... Pi+2j-1 

where p, i p_i is the autocorrelation at lag i, defined by Cov (y,, y,_-)/Var (y,) and where 
Ho(Pi) = 1. Alternatively, one can replace pi with (-1)'pi in all the above formulae. Simple 
recursive relations to calculate the array values are given by Gray et al. (1978). 

Table 1 
Theoretical pattern of the R-array for an ARMA(p, q) process 

i j=1 j=2 ... j=p j=p+ ... j=p+k 

-l p_-1 R2(.) ... Rp(.) 0 ... 0 

-q-p-1 P-q-,p- R2(. .. R(.) 0 0 
-q-p P-q-p R2(.) ... nz nz 

q-p •-p R2 ... R(.) nz ... nz 
q - p + 1 Pq-p+ R2(.) Rp(.) 0 0 

g Pg R2 ... ) 0 ... 
nz, nonzero. 
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Table 2 
Theoretical pattern of the S-array for an ARMA(p, q) process 

i j=1 ... i=p j=p+1 ... j=p+k 

-(.) ... C2 u ... u 

-q-p-1 S1(.) ... C2 u ... u 
-q-p S(.) ... C2 00oo ... 0oo 

-q-p+1 
Sl(.) 

... nc nc ... nc 

q- p-1 S(.) ... nc nc ... nc 
q-p Sl(.) ... C1 -C1 (-1)kC1 

q-p+1 Sl(.) ... C1 u ... u 

g ... C1 u ... u 
u, undefined; nc, nonconstant. 

CI=(-1)P(1- 

, 

C2=-C1 

p/o 
i=l 

If the observations are from a stationary ARMA(p, q) process, and the true autocorrela- 
tions are used to calculate the array elements, then the R-array will exhibit the behaviour 
shown in Table 1 and the S-array that shown in Table 2. In particular the pattern of the 
(p + 1) st column in the R-array and that of columns p and (p + 1) in the S-array are to be 
noted. When p =0 the S-array will have no fixed pattern and the Gray et al. (1978) 
method of order determination amounts to examining the first column of the R-array. 

When the autocorrelations pk are replaced by the mean corrected sample autocorrela- 
tions r'", that is 

n-k n 
= E (y1 - (y t=1 t=1 

is used instead of the true autocorrelations, the behaviour of the arrays will be an 
approximation of that described above; furthermore, the (p + 1)st column of the S-array 
will consist of highly variable terms. One looks for the above behaviour in the arrays 
shown in Tables 1 and 2 in order to determine the values p and q. Gray et al. (1978) and 
Woodward & Gray (1978) suggest that using rk" to calculate the arrays gives easier 
identification of high frequency data (in the spectral sense of the word) while (-1)krk" works better with low frequency data, although this is not always the case. In addition 
these authors suggest that it is usually easier to identify p from the S-array and q from the 
R-array. 

Clearly the Gray-Kelley-McIntire procedure to model selection is one of pattern 
recognition and in this respect, it is similar to the Box-Jenkins graphical approach to ARMA 
model identification. An obvious drawback of the R- and S-arrays approach is that the 
user may be confused by the large volume of numbers. To overcome this problem Gray et 
al. (1978) suggested a statistic which, using various properties of the R- and S-arrays, has 
been designed for testing the significance of the identical values of p and q. We do not 
discuss this statistic here since its sampling distribution has not yet been developed, and 
the patterns in the R- and S-arrays have to be quite distinct to give a significant value of 
the statistic. In the latter case, the statistic loses most of its usefulness. 

Further comments to the Gray, Kelley & McIntire paper are given by Tukey et al. 
(1978). These reviewers make it clear that the R- and S-array procedure is quite complex 
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and its statistical properties, such as consistency of the selected order, are theoretically 
difficult to verify. Furthermore, for real data series the various arrays may not give such a 
clear-cut identification as the simulated time series presented by Gray et al. (1978) do. 

3.3 The comer method 

Yet another method which uses the autocorrelations to generate an array for identifying 
the order of a time series process is the so-called corner method of Beguin, Gourieroux & 
Monfort (1980). These authors base their order determination method on the j x j 
determinant A(i, j) which is defined as 

Pi Pi-1 . . Pi-i+1 

Pi +1 PA 
Pi--+2 A(i, )= (i, j= 1, 2 ... L). (3.4) 

Pi+i-i Pi+ij-2 ... Pi 

Beguin et al. (1980) prove that a stationary process {y,} has a minimal ARMA(p, q) 
representation if and only if A(i, j) =0 for all values i ~q + 1 and j > p +1; while A(i, p) # 0 
for all values i > q and A(q, j) # 0 for all values j > p. Table 3 presents the tabulation of 
A(i, j) versus i and j in a so-called A-array. For stationary ARMA(p, q) processes, identify- 
ing p and q with this corner method is equivalent to identifying a corner of zero values in 
the A-array. 

It is easy to see that the corner method is directly related to the Gray et al. (1978) order 
determination method, since A(i, j) = (-1)1/2]Hij(P~_i+j) where [x] denotes the integer part 
of x. In practice, the autocorrelations Pk in A(i, j) are replaced by the mean corrected 
sample autocorrelations r"k, resulting in an array which will be somewhat different from 
the pattern in Table 3. Beguin et al. (1980) claim that visual inspection of this sample 
A-array is generally sufficient to select the appropriate order of a model. However, de 
Gooijer & Heuts (1981) seem to refute this claim. Also these authors point out that the 
application of a test suggested by Beguin et al. (1980) to detect whether a 'corner' is equal 
to zero, has severe limitations; see also Petruccelli & Davies (1984). An extension of the 
corner method to the determination of the order of nonstationary ARMA processes has 
been considered by Hamdi (1982). Liu & Hanssens (1982) have generalized the method 
to the identification of multiple-input transfer function models. 

Table 3 
Theoretical pattern of the A-array for an ARMA(p, q) process; i, moving average order; j, 
autoregressive order 

i j=1 j=2 
... p j=p+l ... j=L 

1 A(1, 1) A(1, 2) ... A(1, p) h(1, p+ 1) ... (1, L) 

q A(q, 1) A(q, 2) ... A(q, p) A(q, p + 1) ... A(q, L) 
q+1 A(q+ 1, 1) A(q + 1, 2) ... A(q + 1, p) 0 ... 0 

L A(L, 1) A(L, 2) ... A(L, p) 0 0 
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Table 4 
Theoretical pattern of the generalized partial autocorrelation array for 
an ARMA(p, q) process; i, moving average order; j, autoregressive 
order 

i j=1 ... j=p-1 j=p j=p+l ... j=L 

q ) ?... ? 4? p-,p-1 .O 0 ... 0 

q + 1 •+ ) . 'Jj1 4, u ... u L 11 .. p-lp-1 p u ... 

L (L) up u u 11 "-" p-- p--1 "o"p 

u, undefined. 

3.4 Generalized autocorrelations and partial autocorrelations 

If {y,} is an 
ARtA(p, q) process the theoretical autocorrelation function of such a process 

does not satisfy the first q Yule-Walker equations. However, it is well known that for j> q 
the autocorrelations of such a process do satisfy the set of equations E ~ip-i_ 

= 0, where 
the sum is over i = 0, ... , p. Using this observation, Woodward & Gray (1981) define the 
generalized theoretical partial autocorrelation coefficient as 

(Pi+l/Pi 
if j= 1, 

*= (i, j)/A(i, j) if j> 1, 
where A*(i, j) is the determinant composed of the first i- 1 columns of A(i, j) with the ith 
column given by the vector 

(pi+I,..., pi•+)'. 
Jenkins & Alavi (1981) refer to these as 

q-conditioned partial autocorrelations. It is interesting to note that 4)o (j = 1, 2,...) are 
the ordinary partial autocorrelations. 

Woodward & Gray (1981) show that the properties of 4(•) make it possible to uniquely 
identify p and q of a mixed process if the theoretical autocorrelations are known. They 
also establish the following relation between the S-arrays and the generalized theoretical 
partial autocorrelations: 

S-Si(f-i+i-)/Sj(f1j-i) 
if f = 

p(3.6) - 

= (3.6) 

S(-1)+1Sj(f-j+i+1)/Sj(f_-i-) 

if fi = 
(-1)Epi. 

For an ARmA(p, q) process the 0,! can be arranged as in Table 4. Thus a natural 
procedure for model identification is to find a column p of the generalized partial 
autocorrelation array with relatively constant entries and a row q in which the elements 
are zero for columns j (j > p). Woodward & Gray (1981) illustrate this method, together 
with an application of the S-array procedure, by means of several examples. 

In practice the theoretical autocorrelations pk have to be replaced by the sample values 
rk" and simulation results presented by Newbold & Bos (1983) indicate that the 
corresponding sample statistic is a poor estimator of (3.5). Further, it is shown by Davies 
& Petruccelli (1984) that the generalized sample partial autocorrelation function has an 
unstable behaviour when applied to time series of moderate length. This makes it less 
attractive for model specification; for additional discussion see also Glasbey (1982). 

A generalized autocorrelation function useful for determining the order of an ARMA 
process has been recently proposed by Takemura (1984). Based on ideas given by Bartlett 
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& Diananda (1950) he defines this function, for i > 0 and j > 0, as 

[Ii+i+l- 
y(j+ 1, i)'F(j, i)-'y(i+ j,-i)] 

x [Yo- 2(j, i)'F(j, i)'-lyi 
+1, i) p(i + 1, + 1) = +Y(i + 1, i)'F(j, i)-1F(O, i)r(j, i)'-1yG( + 1, i)]-1 if IF(j, i) #0, (3.7) 

0 if IF (, i) = 0, 

where, for i >0, y(j, i) = (yi, y+ ... , yTi+i-)' and y(j, -i)= (yi, yi-l,..., -yii+1)', with 
y = Cov (y,, y,_i) the theoretical autocovariance at lag i, and where the i xi Toeplitz 
matrix F(j, i) is given by 

Ti TYi+1 * * * Y+i-1 

(, i) -1 
... yTi+i-2 

/i-i+1 'Yj-i+2 
* 
... i 

Takemura proves that p(i, j) (i > 0, j > 0) has the following properties: p(1, j) = p, for 
j a1; p(i, 1) = -4 for i: 1; -1 p(i, j):<1; and, for an ARMA(p,q) process, p(i, j)=0 for 
i > p and j > q. Clearly, this latter property can be used to identify the orders p and q of 
the process. Also he shows that the function (3.7) can be quickly calculated by recursive 
formulae which are a straightforward generalization of the well-known Durbin-Levinson 
recursive procedure for computing partial autocorrelations. In practical applications the 
theoretical autocovariances y, are, of course, replaced by the sample autocovariances. If 
r(i + 1, j + 1) denotes the resulting generalized sample autocorrelation coefficient, then 
Takemura (1984) proves that for an ARMA(p, q) process with 4~p 0 and 0q # 0, the statistic 

n"r(p + 1, q + 1) 1+ 2 (r:)2 

has an asymptotically standard normal distribution. Here r? denotes a consistent estimate 
of y = Cov (x,, x,_), where x, = 4Op(B)y, = Oq(B)a,. It is clear that this test statistic can be 
conveniently used to test for each pair (p, q) the null hypothesis p(p+ 1, q+ 1) =0. 
Simulation results given by Takemura seem to confirm this conjecture. 

3.5 Iterated regression and the extended sample autocorrelation function (ESACF) 

Tiao & Tsay (1983a, b) and Tsay & Tiao (1984) used consistent estimates of the AR 
parameters of either stationary or nonstationary ARMA(p, q) processes to define the 
'extended sample autocorrelation function' (ESACF) from which the values of p and q can 
be determined. If {y,} follows an ARMA(p, q) process then it can be shown that, in 
probability, 4p) - for 1 = 1, ... , p if j > q (regardless of whether or not the process is 
stationary), where 4p"1) is the AR parameter estimate at lag 1 of the jth iterated AR(p) 
regression. For ease of calculation, estimates of these parameters are obtained recursively 
for j > 1 using 

p(1) f (p 
+l(+)-- 

)/ 
p((--1) 1,p+l(p2,1, 

, p), (3.8) 

where 
4•(-'= 

-1. 
To obtain the ESACF, it is necessary to calculate the ordinary least squares estimates 

f4,%, for p = 1, 2, ..., po+ q0 and 1 = 1, 2,. .., p, by successive AR(1) through AR(po+ q0) 
fittings where Po and 

qo 
are predetermined values. Using the recursive formulae, 

4^1), 
for 

p = 1, 2, ... ,Po, I = 1, 2, ... , p and j = 1, 2, ... .,q0, are then calculated. For any finite 
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Table 5 
The extended sample autocorrelation table 

Autoregressive Moving average order 
order 0 1 2 3 

0 r(0o) r2(0) r3(0) r4(0) 
1 r1(l) r2(1) r3(1) r4(1) 
2 r 1(2) r2(2) r3(2) r4(2) 

value m, the 
mrth 

ESACF is defined as 

rk(m)= lag k sample autocorrelation of -y,E- 
(k) 

yt]). 

(3.9) 
1=1 

Since 4m(1) is consistent for 40 
(1/= 

1,2,..., m), the sample autocorrelations of y,- 

S~(y,,, where the sum is over 1= 1,..., m, are in large samples given by rk(m)= 0 for 
k>q and p=m. 

Using the iterated regression estimates, the jth ESACF at lag k, rkG), for j = 1, 2,..., po 
and k = 1, 2, .. ., qO, can be calculated from the residual processes. These values are 
arranged in a two-way table as shown in Table 5 in which the first row gives the ordinary 
sample autocorrelation function of the series y,. Tsay & Tiao (1984) show that, for an 
ARMA(p, q) process, the ESACF has the following asymptotic property: 

c) 
= 

(j-p'k-q) 
(O0 k-q< 

]j-p), (3.10) 
Srk(k - q >j - p > 0), 

where c(j - p, k - q) is some nonzero constant or a continuous random variable bounded 
between -1 and 1. 

The large-sample property (3.10) can be utilized to tentatively identify the order of an 
ARMA(p, q) process. In particular, the values of p and q can be determined by searching for 
the vertex of a triangle of asymptotic 'zero' values in Table 5, having boundary lines 
j = d1 i 0 and k - j = d2 0. The order of the process is then deduced from the row and 
column coordinates of the vertex. For finite values of n, the 

rk.)'s 
will not all be equal to 

Table 6 
The asymptotic extended sample autocorrelation table for an ARMA(p, q) 
process 

Autoregressive Moving average order 
order 0 1 ... q q+l q+2 q+3 ... L 

0 c X ... X X X X ... X 
1 c X ... X X X X ... X 

p-1 ... X X X X ... X 
p c X ... X 0 0 0 ... 0 

p+l c X ... X X 0 0 ... 0 
p+2 c X ... X X X 0 ... 0 

L c X ... X X X X ... O 
X, a value ?>(2/(n-j-k)) or <(-2/(n-j-k)); 0, a value between 

+2(n - j - k)-l; c, a value between -1 and 1. 
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zero. As an additional tool to detect whether they are indeed equal to zero, Tsay & Tiao 
(1984) suggest to use Bartlett's (1946) formula (n - j - k)-1 as an approximation to the 

asymptotic variance of the rkG)'s. The use of this formula is based on the hypothesis that 
the transformed series f•)(B)y, is a white noise process. As a simple informative guide to 
detect the patterns in Table 5, Tsay & Tiao (1984) advocate the determination of the 
order (p, q) by searching for the required 'cutting off' behaviour as shown in Table 6. 

This method of order determination provides information on the 'maximum orders' of p 
and q since differencing of the data from nonstationary processes is not required. The 
identification technique is claimed to have performed quite well in practice, but a great 
deal of computation may be necessary to estimate the iterated regression coefficients and 
to calculate the residual processes and their sample autocorrelations. Tsay & Tiao (1983) 
have applied ESACF to the modelling of seasonal time series and Tiao & Tsay (1983b) use 
it to build multiple time series models. 

4 Methods based on the one-step-ahead prediction error 

The difficulties in determining the order of an ARMA model by using the Neyman- 
Pearson approach have introduced the important notion that one should not expect a 
finite number of observations on a time series process to give a clear-cut answer about the 
true order of that process. After all the existence of such an order is only a conceptual 
convenience. If one's primary goal is to select the best approximating model then it is 
much more reasonable to do this with respect to a particular purpose one has in mind for 
the model. The prediction of future values of a series is such a typical purpose. A number 
of objective order-determination procedures have been proposed to assess models on the 
basis of their predictive power, both within and outside the sample. 

4.1 Final prediction error (FPE) criterion 

Akaike (1969, 1970a) proposed a method which chooses the order p of the autoregres- 
sion so that the expected one-step-ahead squared prediction error is minimized, consider- 

ing the errors due to the inaccuracies when a low order is selected, and the error due to 
the increase of residual variance (caused by a decrease of the number of degrees of 
freedom) when a higher order is selected. 

Let a stationary time series be generated by an AR(p) process, where p is finite and 
bounded by some integer L. If we assume that the parameters of this process are known, 
the minimum mean squared error forecast at time t = n, one step ahead, is 

9n(1) = 
4Yn + .. +4OpYn-p+1 (4.1) 

and the one-step-ahead prediction error yn+ - 9(1), has mean squared error given by 
E[(yn+ - 9,(1))2] = 

, see, for example, Box & Jenkins (1976, ? 5.1). 
When the parameters 4i are replaced by their least squares estimates and when n is 

large the expected mean squared error of the estimated one-step-ahead predictor be- 
comes approximately 

E[(yn+1 - •n(1))2] = o-(1 + pin); (4.2) 

see Yamamoto (1976). If we replace 
o2 

by its 'unbiased' estimate n62l(n - p), Akaike's 
(1970a) so-called final prediction error (FPE) statistic, is defined as 

FPE(p) 
= 6 (n + p)/(n - p) (4.3) 

and the order is chosen for which FPE(p) (p =0, 1,.... , L) attains its minimum value. In 
this method no subjective element is left in the definition of FPE(p), except for the 
determination of the upper limit L and the choice of the one-step-ahead prediction error 
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criterion. In practice, one usually fixes L at a rather large value (<n) to ensure that it 
exceeds the true order when the process is purely AR. 

Generally, if the order of fit is increased, 0&5 will tend to decrease to some level near the 
theoretical value ro-, whereas the extra factor on the right-hand side of (4.3) penalizes an 
increase of p by 'pulling up' the FPE value. By seeking the minimum of FPE we select an 
order p which balances the risk between both terms optimally. It should be noted, 
however, that when n >> p, (n + p)/(n - p) is little affected by changes in p and it is, in 
general, difficult to choose the correct model order with a high degree of consistency 
(Gersch & Sharpe, 1973). 

The properties of FPE for selecting the order of AR models were investigated by 
simulations, Bhansali (1973) concluded that FPE tends to overfit the true order of the 
generating AR process for series of length 50. Jones (1975) reanalysed Bhansali's results 
and pointed out that Bhansali had used an incorrect definition of the FPE criterion; see also 
Akaike (1974) for some comments on Bhansali's paper. In spite of this it was proved 
later, by Shibata (1976), that Bhansali's conclusion with respect to the properties of the 
FPE criterion is justified. We will discuss this in ? 5 when we consider a refinement of the 
FPE statistic suggested by Akaike (1974). 

Akaike (1971) extended the FPE method to the determination of the order of mul- 
tivariate AR processes. S6derstr6m (1977) showed that (4.3) can be used independently of 
the model structure. Thus, on replacing p in (4.3) by the number of estimable parameters 
it can be applied to all standard time series models including mixed ARMA models. An 
interesting generalization of the FPE method was obtained by Bhansali & Downham 
(1977). These authors have suggested that a choice of order could be based on the 
minimum of the function 

FPES(p) = i(1+ 8p/n) (p = 0, 1, ...., L), (4.4) 

where 8 is a positive constant. 
It is easy to see that a choice of 8 = 2 in (4.4) corresponds to using the FPE criterion. By 

choosing 8> 2, one increases the penalty of overparametrization. In the simulation 
experiments of Bhansali & Downham (1977) values of 8 in the range 1-4 were consi- 
dered. Their results show that, if n is quite large (n > 300) the correct model is fitted more 
frequently for 8 > 2 than for 8 = 2, but if n is small (n = 50) this may not necessarily be 
the case. However, simulation results given by Akaike (1979) indicate that severe cases of 
underestimation of the true order can be expected with 8 > 2 for high-order models. This 
result is confirmed by Atkinson (1980) who claims that, on the basis of mean squared 
prediction error, the choice 8 =2 should be adopted in (4.4). 

For a further discussion of the FPE method see Akaike (1970b), Bhansali (1978) and 
McClave (1975, 1978). A similar criterion to the FPE8 method has been developed by 
Bhansali (1983b) for determining the order of MA processes. Applications of the FPE 

method are, for example, reported by Caines, Keng & Sethi (1981). Hsiao (1979a, b; 
1982) and Otomo, Nakagawa & Akaike (1972) use the concept of FPE to model vector AR 
processes. See also Liitkepohl (1985). 

4.2 Cross-validatory criteria 

It is apparent from the above discussion that the ability of predicting one-step-ahead 
values of {yt} is measured on the same data used to estimate the parameters of the model. 
To overcome this somewhat unrealistic situation several authors have advocated methods 
based on cross-validatory criteria. Though these methods were originally obtained in the 
context of linear regression models, they carry over to the selection of purely AR models. 

The cross-validatory criteria are constructed as follows. Given a particular model 
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specification in the class of AR(p) (p = 0, 1,..., L) models, the model is estimated n times 
each time deleting one observation from the sample and 'predicting' (in the minimum 
mean squared error sense) onto that observation. The cross-validatory criteria are then 
based on the sum of the weighted squared prediction errors 

wt0,){y, - ,(,)}2, 
(4.5) 

t=l 

where w,(j) is some prescribed weighting function and 9t(i) is the tth 'predicted' observa- 
tion of the autoregression formed from all the observations excluding the ith observation. 
Minimizing (4.5) for p = 0, 1,... , L gives the appropriate order of the model. This 
approach can be said to 'simulate prediction'. In contrast to FPE it does not use an 
observation to aid in the 'prediction' itself. 

Different weighting functions w,(o) produce distinct order-determination methods. Allen 
(1971) proposed his so-called prediction sum of squares (PRESS) criterion by giving an 
equal weight to each deleted observation. The PRESS criterion has been applied to 25 U.S. 
economic time series by Bessler & Binkley (1980) who compared the obtained AR models 
with those suggested by the FPE criterion. Their results suggest that FPE tends to overfit the 
order of the AR models relative to those found by PRESs. Hjorth & Holmqvist (1981) apply 
PRESS to build a multivariate AR model for meteorological data. Other weighting functions 
have been advocated by Schmidt (1974), Stone (1978) and Hjorth (1982) but, as far as we 
know, only PRESS has received some attention in the literature. 

4.3 Criterion for autoregressive transfer functions (CAT) 

Another concept for determining the order of an AR process is given by Parzen (1974, 
1977) by using a spectral theory approach. Since this procedure is closely associated with 
the FPE method, only its main characteristics will be presented here. Parzen (1974) 
assumes that an observed time series is generated by an AR process of infinite order 
described by 4,(B)y, = a, with Var [a,] = ao, and that this process can be adequately 
approximated by a finite AR(p) process with variance -E2(p). Based on the spectral density 
functions of the two time series processes, Parzen (1974, p. 727) proposes the following 
criterion of 'distance' between the two AR processes 

= (2)-f'J I{too(e"~)- (e')}I/o(eH')12 do. 

Parzen shows that for a fixed p the minimum of J, is 1- _-2/ro (p) and it is reached 
when the AR parameters are estimated by the Yule-Walker equations. Denote these 
estimates by 4, and let 4,(z) = E z', it was proved by Kromer (1969) that approximately 

[ 
2+- 

(4.6) 

The term (1-o-2jo-2(p)) in (4.6) represents the bias due to approximation of 4.(B) by 
4,(B), while p/n represents the overall variance of estimating the parameters 4, in 
4,(B)y, = a,. 

Originally Parzen proposed to adopt that value of p as the most suitable order of the 
process for which (4.6) is minimized. Later, he recognized that this criterion is cumber- 
some to use in practice since it would require an estimate of 

or. 
Parzen (1975) modified 

his criterion to a version which he calls CAT ('the criterion for autoregressive transfer 
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functions'). It is given by the function 

CAT*(• P)2(* -)a2(p) (p= 1, 2, ... , L),(4.7) CAT* (p) = i= (4.7) 

-(1 + n-) (p = 0), 

where d,(j) is the residual variance estimate, adjusted for degrees of freedom, when an 
AR(j) model is fitted to the data. 

Usually (4.7) is minimized with respect to p = 0, 1, 2,... , L to obtain the appropriate 
order of an AR time series model. However, Tong (1979) showed that the absence of 

-2(0) in (4.7) may lead to underestimation of the true order of the process. He suggested the 
following modification of CAT, namely 

A- A-2p) ( CAT(p) = n-1 ' )-2*) -2(p) (p =0, 1,..., L). (4.8) 
j=0 

The criteria (4.7) and (4.8) are further discussed and applied by Parzen (1975, 1978, 
1979, 1980) and Parzen & Pagano (1979). Beamish & Priestley (1981) compare by 
simulation FPE, AIC and CAT* for the determination of the order of various AR processes. 
For most of the simulated series, the three order-determination methods led to the same 
order of fitted AR models. An extension of CAT for multiple AR processes is introduced by 
Parzen (1977). 

5 Methods based on information measures 

Fisher's well-known concept of information, through its elicitation of the maximum 
likelihood principle and ancillary statistics, has become the basis of a number of order 
determination procedures. The same cannot be said of another concept of information 
which bears a strong correspondence to the probabilistic interpretation of ther- 
modynamic entropy. The use of the concept of entropy is relatively new in the area of 
time series analysis. But before concentrating on this area, we will deal with the 'standard' 
statistical situation of having n independent observations on a random variable Y. 

Suppose Y is an absolutely continuous random variable characterized by a probability 
density function f(Y I P) which is known apart from the k-dimensional parameter vector 
0 = 

(31,, 2, - - 
-3,k)', 3, ER k. Assume that there exists a 'true' vector of values P* of 0 and 

denote the true density f(Y) by f(Y I 3*). Within this framework it is required to select 
the p 'closest' to the true parameter vector 3p*. The goodness of fit of f(Y I 13*) with 
respect to f(Y I p) can be measured by the entropy; see Akaike (1978b) for a formal 
justification. This is defined by 

B(* , (P) = f (Y l*) log f (Y (3) dy - f (Y 3*k) log f (Y 13*) dy. (5.1) 

The second term on the right-hand side of (5.1) is a constant for given f(Y I P*). The first 
term determines the goodness of fit of f(YI 3) to f(YI P*). 

Instead of maximizing the entropy criterion (5.1), the following information criterion 

I(p3", 3p)= -B(p3*, 3p)= 
{logf(Y 

l3*)-logf (YI 3)}f(Y 3*) 
dy (5.2) 

may be minimized. This last quantity is known as the Kullback-Leibler mean information 
measure, see, for example, Kullback (1959) and is always greater than zero unless 
f(YI p*) = f(YI p3) almost everywhere in the possible range of Y; namely when the 
model is essentially true. 
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An operational decision rule can be derived from (5.2) if it is assumed that 0 is 
sufficiently close to 0*. Let 3 = 3* + Ap where AP = (AP31,..., A3k)' is a k x 1 vector, the 
norm of which is small, then the following Taylor series expansion of 1(0*, 0) is valid: 

13, A(A log g f(Y P*) 

R02 a2 log f (Y I P*) 
ii I13 

If f(Y I p*) is a regular function, the first term on the right-hand side vanishes and we 
have I(p3*, 3* + Ap)• -' ll, A1, where IIA,&p- = Ap'I(p*)Ap with 11.112 the Euclidian norm 
and I the Fisher information matrix. 

Next, assume that we restrict p to lie in an s-dimensional subspace (s = 1,...., k - 1), 
Os, whilst the true parameter vector, P*, lies in a k-dimensional space (k > s). Denoting 
by P3 the projection of P* onto Os, in the sense of the norm I1.112, it can be shown that 

21(3P*, 
3s)•_ p'3*s 

- 13*lJj + 
j3s - *s 

(5.3) 
where se E Os and is close to p3". 

Replacing Ps in (5.3) by the vector of random variables 3s which is the restricted 
maximum likelihood estimates of 1* in Os and using the fact that n lipt-sIIf is 
asymptotically X2 distributed with s degrees of freedom, see, for example, Huber (1967), 
we obtain that for large n 

2E[I(P *", ps) ] ,IP1*- p3*I• + s/n. (5.4) 

The equation in (5.4) above yields a measure of the extent to which 
P• 

deviates from the 
true parameter vector 3*. Roughly, this equation implies that the 'expected' deviation of 

3s from 1* has two components: one, representing the error made in selecting an 
approximate parameter space for P3", the other being the error due to estimating the 
specified parameter vector. 

In empirical work with finite samples, it is of course impossible to minimize (5.4) 
directly because the first term on the right-hand side of (5.4) is unknown and needs to be 
estimated. Akaike (1973) shows that under certain regularity conditions the likelihood 
ratio statistic 

LR(Y) = -2 log 
[f(y, 

I 
13s)/f(Y, 

I 13)], i=1 

where 0 is the maximum likelihood estimate of 3, is asymptotically distributed as a 
noncentral X2 variable, with k - s degrees of freedom and noncentrality parameter 

lIp3s- 
p3*1, so that 

n -1(LR(Y) + 2s - k } (5.5) 

is an unbiased estimate of (5.4). In practice (5.5) can be simplified by dropping terms 
common to every model since we are only concerned with choosing the minimum. Hence, 
we need only to minimize 

-2L,(Y; ps)+ 2s (5.6) 

over s = 1,..., k -1. This procedure is usually called Akaike's information criterion (AIC). 
We may interpret AIC in the following way. The first term of (5.6) gives the penalty due 

to badness of fit whilst the 2s penalizes the selection of too high an order model and the 
resulting increased unreliability. As s increases, the first term decreases, and so AIC 
achieves its minimum, with the model giving the best compromise between fit and 
unreliability. In this respect the AIC may be regarded as a mathematical formulation of the 
principle of parsimony. 
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Akaike (1973, 1974) was the first who recognized the relevance of entropy for the 
determination of the order (p, q) of an ARMA model. When a time series is generated by a 
Gaussian distributed ARMA(p, q) process the approximate maximum value of the log 
likelihood function L, is given by 

n, = -2n log 2^-1n; (5.7) 

see, for example, Box & Jenkins (1976, Ch. 5). Ignoring the second term on the 
right-hand side of (5.7) which is a constant independent of the parameters of the process 
and the order (p, q), we may express (5.6) in the following equivalent form: 

AIC(p, q) = n log 62+ 2(p + q). (5.8) 

Akaike's procedure suggests to choose that order (p, q) as the most appropriate order for 
which AIC(p, q) (p, q = 0, 1, ... , L; L is a preassigned upper limit to the order which needs 
not necessarily be the same for p and q) attains its minimum. 

A number of authors have questioned the origin of the structure dependent term in 
(5.8). That term resulted from the observation made by Akaike (1977) that the bias 
caused by the asymptotically distributed estimate of AIC(p, q) is minus twice the number 
of parameters in the model and, hence, it could serve as the desired 'penalty term'. 
However, the curious thing about this is the coincidental appearance of the number of 
parameters in the bias and what seems to be needed to penalize overparametrization. 
After all, why should the penalty term be a linear function of the number of parameters? 
Certainly not because the bias happens to be such a function of them. This has motivated 
several authors, including Akaike himself, to continue the search for a more fundamental 
and natural method of selecting the order of a time series process. 

A second motivation for many authors to consider other ways of determining the order 
of time series model stems from the fact that the AIC estimate is not consistent but 
asymptotically overestimates the true order with a nonzero probability. Shibata (1976) 
proved this result for general AR(p) models. The result also holds for FPE, the variant 
asymptotically related with AIC. A second and far less complete proof of this was given 
much later by Kashyap (1980). 

Of course, inconsistency of AIC for AR models implies inconsistency for ARMA models. 
However, the proofs of the two cases are markedly distinct. If (p*, q*) is the true order of 
the ARMA(p, q) model and p* <P, q* < Q, where P, Q are the maximum values consi- 
dered, then, under very general conditions, Hannan (1982a, Theorem 2) showed that the 
order obtained by AIC is sure to overestimate (p*, q*). Hannan indicates that this result 
needs to be taken cautiously because of its very asymptotic nature. Furthermore, it also 
assumes that there is a true ARMA model with order (p*, q*). In practice, however, time 
series will not be generated precisely by an ARMA process and the estimated model may be 
considered only as an approximation. For multivariate ARMA models Hannan (1982b, 
p. 462) essentially proved the same result as for the univariate ARMA models. 

Asymptotic efficiency of AIC has been investigated by Shibata (1980). Based on a 
particular loss function for estimating the parameters in an AR(p) model, he shows that, 
when the true order is infinite, AIC results in an optimal sequence of order estimates as n 
approaches infinity. Unfortunately, Shibata's result is not above reproach because the loss 
function used is just the one to derive FPE. Hence, it is no surprise that FPE and methods 
asymptotically equivalent to it are efficient. An extension of Shibata's work to ARMA 
processes, which need not necessarily be Gaussian distributed, has been established by 
Taniguchi (1980). 

Applications of AIC are, for example, reported by Akaike (1978b), Jones (1974) and 
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Tong (1977) for AR processes. The problem of choosing the order of ARMA models, using 
AIC, is considered by Kitagawa (1977) and Ozaki (1977). Neft9i (1982) uses AIC for the 
specification of models to economic time series. In the context of modelling nonstationary 
processes the use of AIC is discussed by Kitagawa (1981), Kitagawa & Akaike (1978) and 
Kozin & Nakajima (1980). Tong (1975) considers the determination of the order of a 
Markov chain. Other situations in which AIC has been applied include factor analysis and 
polynomial fitting (Akaike, 1977). A selection rule for selecting a subset of 'good' models 
using AIC has been proposed by Duong (1984). 

6 Bayesian methods 

Bayesian methods for selecting the order of a time series process, as classically 
proposed in Bayesian inference, should not be considered among the class of methods 
mentioned in the previous sections. They make use of prior knowledge about the 
parameter(s) of the model, which is of the form of a probability density function. Several 
Bayesian criteria have appeared in the literature. We will first briefly formulate the 
Bayesian methods within a general framework and then discuss these methods for 
determining the order of ARMA time series processes. 

Consider again the situation where a sample of size n, Y = (y,,... , y,)' on a continuous 
random variable is available. Suppose that two models are entertained as having possibly 
generated or offered a satisfactory representation for this set of observations. Further- 
more, assume that these models are characterized by the two hypotheses Hi (i = 1, 2) 
represented by the probability density function f(Y I P), where ,3 (i = 1,2) is a ki- 
dimensional vector of independent unknown parameters, Pi e Ri. In the Bayesian 
framework the choice between H1 and H2 may be made using the posterior odds ratio 

P(H1 I Y) P(Hj) P(Y I Hj) 
K2 = P(H21 Y) P(H2) P(Y I H2)' (6.1) 

where P(H,) denotes the prior probability that Hi is true; see, for example, Zellner (1971, 
Ch. 10). 

Note that K12 is equal to the prior odds ratio times the ratio of averaged likelihoods, 
where the averaging is done using the prior probabilities for the parameters. Evidently 
this testing procedure differs from the likelihood ratio procedure where for discriminating 
between H, and H2, maximum likelihood estimates are used as if they were true values of 
the unknown parameters. The posterior odds ratio is a measure of relative strength of 
belief in the competing hypotheses H1 and H2, given sample evidence. By choosing a 
model with the highest posterior probability one is acting to minimize the expected loss 
associated with the acceptance of one of the two hypotheses. That is, if K12> 1, one 
chooses H1 and if K12 <1, one chooses H2. When K2 = 1 one is indifferent in terms of 
expected loss. Of course, this rule is optimal only in case of symmetric loss functions of 
the models. Generalization of (6.1) to asymmetric loss structures which is often the case 
when choosing the order of an ARMIA model, is straightforward. 

It is clear from the above discussion that the model with the highest posterior 
probability P(H, JIY) must be chosen, given a symmetric loss function. Hence, maximize 
P(H,)P(YI Hi). Unfortunately, in practice, it is usually difficult to specify completely the 
prior probability that a given model is the true one. In many cases P(H,) must be replaced 
by some probability that the model is the most adequate one. In the later case, and not 
entering into interpretation problems, the concept of 'vague' or 'diffuse' prior probability 
is often used in the literature. The difficulty with this concept can be avoided by following 
Jeffreys' (1961, p. 117) suggestion and taking equal prior probabilities P(H,) (i = 1, 2) for 
each model. Hence the model with the highest P(Y I Hi) must be chosen. 
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Using a theorem of Jeffreys (1961, pp. 139-), cited by Zellner (1971, pp. 31-33), 
Chow (1981) showed that, with a minimal data information prior, log P(Y I H,) evaluated 
at 3 is given by 

log P(Y I H,)= L,(Y; 
A,)- 

4ki log n -4 log det I(U ,)+i k log (27T) 
+ log fH,(3) 

+ O, (n-), (6.2) 

where L, denotes the log likelihood function, f(I3) is'the prior density when model Hi is 
true, 3 is the maximum likelihood estimate of P3, 

I(3•) 
is the information matrix evaluated 

at f, = fi, and O,(n-1) denotes order of probability. 

6.1 S criterion 

Unfortunately (6.2) involves a difficult problem which has been recognized by many 
Bayesian statisticians, namely the choice of the prior density fH1(P) for each model Hi. 
Schwarz (1978) got around this problem by retaining only the first two terms on the 
right-hand side of (6.2). For large samples he proposed to choose the model for which 

S = L,(Y; 3,) - ?ki log n (6.3) 
is a maximum. 

Qualitatively this criterion, like AIc, gives a mathematical formulation of the principle of 
parsimony. Quantitatively, the difference between (6.3) and AIC is only that in the former 
the dimension of the model is multiplied by - log n. However, this difference is rather 
crucial since it can be shown that S is a strongly consistent method for AR models; for 
example, see Geweke & Meese (1981, Th. 5). For nested models AIC does not have this 
property; see also Bethel (1984). 

A critical analysis of S has been given by Akaike (1981). He argued that the use of 
(6.3) is only possible when there is a clearly defined prior density of fK,(i). This in fact 
would be a situation where straightforward application of results from Bayesian inference 
can be used to solve the problem of model selection. Chow (1981) shows that Schwarz's 
criterion will not necessarily be a good approximation to the log of the posterior 
probability for finite sample sizes, depending on the nature of the prior probabilities. In a 
comparative study of AIC and S, Stone (1979) also questions the viability of the latter 
procedure for finite values of n. He remarks that Schwarz's (1978) work includes as a 
special case an earlier effort on model discrimination by Jeffreys (1967). 

For selecting the most appropriate model in a set of ARMA(p, q) models (p, q= 
0, 1, . . . , L) equation (6.3) becomes asymptotically equivalent to minimization of the 
function 

S(p, q) = n log r,+ (p + q) log n (6.4) 

over all values of p and q (p, q = 0, 1,... , L). 
Several similar forms of Bayesian criteria have appeared in the literature. For example, 

Atkinson (1980, 1981) suggests to use a part Y1 of nx observations of the total number 
of n observations Y = (Y, Y2) to obtain the prior density f&(P3 I Y1) (i = 1, 2). Denote the 
residual sum of squares for the ith model (i = 1, 2) from the initial sample Y1 as S,(Y1) 
and from the complete sample as S,(Y). Now the model specified by f(3( ( Y1) and 
f(Y I P3) yields the following log posterior probability: 

log P(H, I Y) 
c• ?,r{S,(Y) 

- 
S,(Y)}-?k, 

log (n/n1)+ const., (6.5) 

where all models are assumed equally likely after the initial sample of observations and 
where oc denotes proportionality. If 

O" 
is not known, the maximum likelihood estimate of 

2 for the ith model can be used. 
Atkinson suggests choosing the ith model for which (6.5) attains a minimum. For large 
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n the effect of the initial sample of nx observations becomes negligible and (6.5) reduces 

to -2log P(Hi I Y) S(Y)/ 
+kcr2+k 

log n. (6.6) 
The Bayesian method (6.5) can be viewed as a special case of Schwarz's criterion (6.4). 
For choosing among regression models the use of S is equivalent to the use of (6.6). The 
distinction between (6.5) and S is that the latter is only valid for large samples. The 
passage from (6.5) to (6.6) clearly demonstrates that prior knowledge about fh(I3) 
becomes of less consequence as n increases. 

6.2 BIc criterion 

On minimizing the neg-entropy of the distribution specified by the likelihoods with 
respect to the prior density of 0, Akaike (1977, 1978a, 1979) determines a minimum 
value for the expected posterior loss function EH,[log f(YI 3)]. This minimum value 
becomes the minimum attainable Bayesian information criterion (BIc) and it takes the 
form 

BIC= (n - k-) log 
{S•(Y)/(n 

- 
k.)} 

+ki log {(nd2- S (Y))I/k}, (6.7) 

where 60 is the raw sample variance of the observations. Akaike (1977) pointed out that 
the use of the method of maximum entropy avoids a gross misfit of the prior probability to 
the data under observation. 

After some simple manipulations, it is easy to see that, for ARMA(p, q) models, (6.7) 
becomes 

BIC(p, q) = n log 6r- (n -p -q) log (1- (p+q)/n)+(p+q) log n 
+ (p + q) log {(p + q)-1(6 /0- 1)}, (6.8) 

where 6a, as before, represents the maximum likelihood estimate of 
o•. 

The set (p, q) 
(p, q = 0, 1,..., L) which produces the minimum BIC is chosen as the optimal order of the 
time series model. 

When n>>(p+q) we may use the approximation, -(n-p-q) log{1- (p+q)/n}- 
(p + q), so that BIC and Aic are connected in the following way: 

BIC(p, q)- AIC(p, q) + (p + q)(log n - 1) + (p + q) log {(p + 
q)-1(6y/6r- 1)} 

- 
AIC(p, q) + (p + q)(log 

F,+,, 
- 1), (6.9) 

where Fp+,,, = n(6- ~D/{(p + q) ia. It is clear from (6.9) that BIc penalizes overparamet- 
rization more strongly than AIC only if Fp+,,,> e. This is not automatically guaranteed. If 
the true model is white noise or if both the sample size and the AR and MA parameters are 
small then Fp+,,, is small. In that case AIC penalizes overparameterization more than BIc. 

Rissanen (1978) suggested to obtain the order of an ARMA(p, q) model by minimizing 
the function 

BIC*(p, q) = log 52+(p+q) log n/n (p, q =0, 1,... ,L). (6.10) 

His derivation is based upon the principle of minimizing the number of binary digits 
required to redescribe the observed data, when each observation is given with some 
precision, with the use of the best coding and the assumed model of the process. 

We notice that (6.10) is essentially the criterion of Schwarz. The main difference, in 
addition to the approach, between BIc* and S is that the derivation of (6.10) does not 
need the Bayesian assumption that the parameters are obtained from a random experi- 
ment with a similar distribution. Rissanen (1980) proved that BIc* gives consistent 
estimates of the order of an AR(p) model. This was extended to ARMA models by Hannan 
(1980) and Hannan & Rissanen (1982). A slightly improved version of the criterion BIc* 
has recently been given by Rissanen (1983). 
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6.3 Bayesian estimation criterion (BEC) and Hannan & Quinn (HQ) criterion 

Two other order-determination methods have emerged in the literature which are both 
Bayesian in inclination and we discuss them here. The first one is Geweke & Meese's 
(1981) so-called Bayesian estimation method (BEC), which originally was proposed to 
determine the order of Gaussian distributed linear regression models. The Bayesian 
estimation method evolves by considering minimization of the so-called estimation 
criterion (EC). For ARMA(p, q) models it becomes 

EC(p, q) = r+ (p + q)g(n)/n (p, q = 0, 1, ..., L), (6.11) 

where g(n) is some function of the sample size n such that g(n)/n = O(n-'). 
If g(n) =0, then (6.11) reduces to minimization of the residual variance estimate 

^2 
over all admissible values of p and q; that is (6.11) becomes an order-determination 
method which is usually employed in the traditional Box-Jenkins approach. If g(n)>O0 
then EC ascribes a marginal penalty of g(n) for each parameter added to the model, whose 
impact becomes negligible as n increases. Geweke & Meese (1981) show that (6.11) can 
be considered as a first-order approximation of Schwarz's criterion (6.4). Accordingly they 
choose g(n) so that (6.11) is a first-order Taylor approximation to S. This leads to the 
criterion 

BEC(p, q) = + (p + q)A2 logn/(n-L) (p,q=0, 1, 
... 

.,L), (6.12) 

where dA2 is the maximum likelihood estimate of the residual variance* of the preassigned 
largest model order. For linear regression models Geweke & Meese (1981) demonstrate 
that BEC leads to consistent estimates of the model order. This result also holds for AR 
models. 

A second order-determination method which can be considered as a variant of 
Schwarz's criterion, and is based on a mixture of the classical and Bayesian inference 
principles, has been proposed by Hannan & Quinn (1979) and Hannan (1980). These 
authors tried to determine a function g(n) such that it decreases faster than n- log n, and 
yet the criterion 

log -1a+ (p + q)g(n)/n 

gives a consistent estimate of the order of an ARMA model. Obviously, g(n) must decrease 
more slowly than 2/n, the penalty term in AIc. Using special theorems about the law of 
iterated logarithms (Heyde, 1974; Heyde & Scott, 1973), Hannan & Quinn (1979) (HQ), 
for pure AR models, and Hannan (1980), for ARMA models, suggest to obtain the order of a 
time series model by minimizing the quantity 

HQ(p, q) = log a+(p + q)c log log n/n (p, q =0, 1 ... ,L), (6.13) 

where c is a constant to be specified. 
If c is chosen so that c > 2, Hannan & Quinn have proven that for AR models 

minimization of (6.13) leads to a consistent estimate of the true order. Using (6.13) with 
c = 2 these authors simulated a number of AR(1) processes for various sample sizes and 
recorded the number of correctly fitted models. Based on a comparison between HQ and 
AIC, Hannan & Quinn conclude that their simulation results show that HQ leads to 
underestimation of the order relative to AIC for smaller n and smaller c but better results 
than AIC for larger n or larger c. They also indicate that for other types of processes this 
result might not be true. This modest assertion is supported by Hannan (1980), who shows 
that the result concerning log log n rather draws a dividing line between consistent and 
nonconsistent order-determination methods than is a result to be used. In Hannan's 
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(1980) paper a proof is also given of the consistency of BIC* for ARMA models. For AR 
models the conditions upon which Hannan's proof is based are recently replaced by 
weaker conditions by Hannan & Kavalieris (1983). 

Before we make some final comments about the general relevance of the order determi- 
nation methods presented here, it is worth mentioning that we have not considered the 
problem of estimating unidentified models, i.e. models where both p and q exceed the 
corresponding true values. As Hannan (1982a, ? 1) has pointed out, it will be very difficult 
to find the maximum of the Gaussian likelihood in such a case since there will be a myriad 
of close together local maxima with some zeros of O,(z) near the unit circle. Hannan 
(1980) and Hannan & Rissanen (1982) have considered this problem in more detail. 
Hannan (1980) proves theoretical results about the maximum likelihood estimation in 
unidentified models. Hannan & Rissanen (1982) produce a practical procedure for order 
selection which basically consists of the following three stages. 

In the first stage an AR(L) polynomial is fitted to the data and the parameter estimates 

ji (j = 1,..., L) are used to obtain d, = y, - E jy,_i (t - L + 1), where the sum is over 
j = 1, ... , L. The value of L is chosen such that it minimizes either AIC or BIC*. In the 
second stage, estimates of the true parameters of the model are computed by regressing y, 
on y,_i (j = 1,..., p) and di,_j (i = 1,... , q). To do this, Hannan & Rissanen (1982) give a 
computationally efficient recursive estimation algorithm which may be considered as an 
extension of the Durbin-Levinson recursive algorithm (Durbin, 1960). If 

6rq 
denotes the 

residual variance of these regressions, then the estimate (p, 4), say, of the true order is 
obtained by minimizing the function 

logP,+ (p+q)log n/n (p <P, q < Q), (6.14) 

where P and Q are predetermined values, chosen sufficiently large. Since the coefficients 

ij and Oj for which (6.14) attains its minimum value are not asymptotically efficient, 
Hannan & Rissanen (1982) suggest to estimate the parameters of the process using any of 
the available algorithms for the computation of the maximum of the Gaussian likelihood 
function, starting the computations with (p, 4) for the order and i4, Oi and &2, as initial 
values for the parameters. This is considered to be the third stage of the procedure. 

Hannan & Rissanen (1982) show that this method of order determination has huge 
computational advantages over straightforward computation of BIC* (or S). However, they 
also point out in a correction to their paper, that the procedure can lead to overestimation 
of the true orders at the second stage. Modifications of the second stage which correct this 
and which do not seriously affect the speed of convergence of the estimates, are recently 
given by Hannan & Kavalieris (1984). These authors also prove that their modifications of 
the original procedure yield consistent estimates of the true order of the process. 

In closing this section we shall make some brief comments about the usefulness of 
'Bayesian' inspired order-determination methods, in contrast to some of the previously 
discussed non-Bayesian ones. The methods based on the maximum likelihood principle 
use functions of the maximum likelihood estimates of the parameters and compare these 
to a prescribed fixed significance level. Often this significance level and the associated 
critical value are chosen with implicit consideration of the relative costs or losses 
associated with the probability of making a type I and type II error. However, in a 
Bayesian context explicit consideration is given to the loss structure, through the posterior 
odds ratio, and this leads to a natural choice of the critical value. For example, increasing 
the sample size will affect the posterior odds ratio and consequently will change a specified 
loss structure whereas with a method based on the likelihood ratio principle usually no 
changes will be made to the significance level in such a situation. 

Another point which has been increasingly recognized in the literature is that use of a 
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fixed level of significance for choosing between models that differ appreciably in their 
parametric dimensionality is not entirely justified since it does not take account of the 
increase in 'variability' of the parameter estimates when new parameters are added to the 
model. In fact, the significance level of statistics based on the maximum likelihood 
principle (for example, LR, w and LM statistics) should be greater, in small samples, when 
the size of the competing models is large. Hence, order determination methods which 
incorporate some form of adjustment to prior information about the model structure and 
sample size, may be preferred to likelihood methods. 

Adjustment of the order determination method to changes in the model structure is 
apparent in AIC. But, as stated in ? 5, the heuristic argument introducing the structure 
dependent term in AIC is debatable. By relating prior information to the parameter 
structure of the model, we have seen in this section that Bayesian order-determination 
methods elicit, in a natural way, terms that penalize an overparametrization of the model. 
A practical method through which prior information can be incorporated in an easy way 
in the specification of ARMA models has been developed by Monahan (1983) for small 
samples. 

Structure dependent terms penalizing overparameterization also appear in the 'Bayesian' 
inspired methods BEC and HQ, and in the Rissanen (1983) type of criteria. All these criteria 
will penalize overparameterization more strongly than AIC and its asymptotic equivalents. 
For this reason, AIC should not be used when the dimensions of the competing model are 
large relative to the sample size. Also when n is small one should not use such procedures 
like AIC. Instead one may have to take the risk involved in prior choice of a particular 
model but, as is clear from the order determination methods presented in the last part of 
this section, one does not have to be a Bayesian to do that. 

7 Relationships between the various methods 

Several relationships between the various order-determination methods have already 
been mentioned in the previous sections. To emphasize the close resemblance in form, a 
compendium of the most important linkages between certain methods will now be 
presented. 

7.1 The AIC and likelihood ratio methods 

An interesting parallel exists between AIC and the likelihood ratio testing procedure. 
For determining the best model structure within the set of AR models it follows from (2.3), 
with c(n) = n, and (5.8) that approximately 

AIC(s, 0)- AIC(L, 0) = LR(s)- 2(L- s) (s = 0,1,..., L - 1). (7.1) 

Hence, this relation can be used to compute the AIC values if likelihood ratios are given. 
Also, for a given sample size n and for various values of s, there is a sequence of 
significance levels such that AIC and LR lead to the choice of the same AR model. For mixed 
ARMA models a similar relation to (7.1) exists when the order of the processes under Ho 
and H1 satisfies certain conditions. 

7.2 The AIC and FPE methods 

It is easily seen that, for values of n >> (p + q), we have the approximation 

{n + (p + q)} 2(p + q) 
= 1+ + O(n-2). {n - (P+ )} n 

This content downloaded from 194.29.185.109 on Fri, 13 Jun 2014 09:11:46 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


324 J.G. DE GOOIJER et al. 

Obviously, this implies that for an ARMA model 

log [FPE(p, q)]= log [a + 

log 2log 1+ 
2(p + 

q +O(n-2)} 

log +2(p + O(n-2). (7.2) n 

Hence, from (5.8), we have 

AIC(p, q)- n log FPE(p, q). (7.3) 

In other words, AIC and FPE are asymptotically equivalent methods for determining the 
order (p, q) of an ARMA model. 

7.3 Relation of AIC, CAT and some other criteria 

A slightly different approach was followed by Tong (1979) on relating AIC to CAT for AR 

processes. Denoting the unbiased residual variance n2/(n - p) by 2&(p), p being the 
number of estimable parameters in the model, and ignoring terms of larger order than 
O(n-1), he used the following asymptotically equivalent form of AIC: 

AIC(p, 
0)- 

n log &2(p) + p. (7.4) 
Thus 

AIC(p, 0) - AIC(p - 1, 0) 1 + n log {&(p)/&(p - 1)} = 1 + n log {1 + o}, 
where o = (62(p) - 62(p - 1))/&2(p - 1). Now it can be shown that 

AIC(p, 0)- AIC(p - 1, 0) 1+ no + nO (n-'). (7.5) 

Furthermore, from (4.8), 

CAT(p) - CAT(p - 1) = (n- 1 2(p) + &2(p -1) 

= & 2(p - 1){1 + (n-1 - 1)(1+)-1} 

•-2(p){AIC(p, 
0)- AIC(p - 1, 0)+ Op(n-?)}, (7.6) 

where Ki2(p)= n-1 
,(p_- 

1). Hence, modulo the term 
K2(p)OP(n-i), 

CAT and AIC are 

directly related by 

CAT(p) - CAT(P - 1) i2(p)(AIC(p, 0) - AIC(p - 1, 0)}. (7.7) 

However, the fact that k2(p) depends on &a2(p - 1) does not necessarily have to imply 
that the global minimum of CAT and that of AIC occur at the same autoregressive order p. 
In particular, Parzen (1977) shows that 

CAT(p) <-exp {-AIC(p, 0)}. (7.8) 

The above results show that FPE, AIC and CAT exhibit similar asymptotic behaviour for 
AR processes. The connection between BIC and AIC was noted in ? 6 for ARMA processes. 
Bednar & Roberts (1982) show that AIC can be calculated directly from the R- and 
S-arrays for ARMA processes. The asymptotic equivalence between AIC and cross- 
validation is established by Stone (1977). The relationships between the R- and S-arrays, 
the A-arrays and the extended (and regular) partial autocorrelations were cited in ? 3. 
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8 Some concluding remarks 

In this paper we briefly discussed several of the most important order-determination 
methods used in time series analysis today. It was not our intention to give a complete 
survey of all the methods presented in the literature. The picture of approaches, methods 
and results is too diverse and, moreover, scattered over several scientific disciplines. 
Neither have we made any recommendation of a single order-determination method as a 
definitely superior method. Such a recommendation can only be done on the basis of the 
final purpose one has for the selected time series model. For example, if one were to 
employ a time series model for forecasting alone, an order determination method which 
minimizes the one-step-ahead quadratic forecasting error is more preferable than methods 
which merely lead to fitted models that provide a good representation of the data in the 
sample. 

It is clear from the discussion in this paper that there are many methods available, each 
with seemingly desirable characteristics. Though attempts have been made to link certain 
order-determination methods the whole selection process of an order may look, on the 
surface, somewhat esoteric. To an unskilled time series analyst it will not always be clear 
when to use a particular method. On the other hand, he or she may not be cognizant with 
the alternative methods available and their possible advantages. Hence, it seems highly 
desirable to order the order determination methods into a coherent and systematic 
framework. Such a framework is at present absent in the literature but we feel that the 
discussion given here may be useful as a stepping-stone for this. However, we shall 
emphasize that the formulation of a complete framework requires more theoretical as well 
as empirical work than is available at present. 

Research should be directed to a theoretical investigation of the small-sample be- 
haviour of the various order-determination methods. Many other theoretical as well as 
empirical problems should be investigated. For example, how sensitive are some of the 
order-determination methods to deviations from the familiar but restrictive assumption that 
the white noise process is Gaussian distributed? How robust are the various methods in 
the presence of outliers and bad data? It is our hope and expectation that these problems 
will be solved in the very near future. But, at present, they are beyond the scope of this 
paper. 
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R6sume 
Le probleme du choix de l'ordre d'un module ARMA a 6t6 6tudie depuis longtemps. Souvent la construction de 

ce modele est bas6e sur les fonctions empiriques d'autocorrelation et d'autocorrelation partielle de Box et 
Jenkins. Plusieurs autres procedures sont disponsibles. Dans cet article nous passons en revue les plus 
importantes de ces procedures et nous examinons leurs propri6t6s statistiques. 
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