Modéles état-mesure et filtre de Kalman
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Introduction aux modéles état-mesure
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Motivation

» Les modéles état-mesure constituent un cadre général permettant de :

» unifier de nombreux modéles de séries temporelles (ARMA, tendances, saisonnalité),
» traiter les observations manquantes de maniére naturelle,

> estimer des composantes non observables (tendance, cycle),

» effectuer des prévisions optimales via le filtre de Kalman.

» Idée centrale : Distinguer ce que I'on observe (équation de mesure) de la
dynamique latente (équation d'état) qui gouverne le systéme.
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Formulation générale

» Equation de mesure (observation) :

Yy =Zioy +dy+e, €~ N(0,Hy)

» Equation d’état (transition) :

o =Tioy_1 +ci+ Remy, M~ N(0,Qy)

» Dimensions : y; € RP (observations), a; € R™ (état), e, € R, i, € R".
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Notations et hypothéses

» Matrices du systéme :

» Z, : matrice de mesure (p x m),
T; : matrice de transition (m x m),
R; : matrice de sélection des perturbations (m x ),
H; : matrice de variance des erreurs de mesure (p X p),
Q: : matrice de variance des perturbations d'état (r x r),
d;, c; : termes déterministes.

vVVyVYyYvVYy

» Hypothéses fondamentales :
> Ele] =0, E[n] =0,
» ¢, et m, sont indépendants pour tout t, s,
» condition initiale : ag ~ N(ag, Py),
> g est indépendant de &; et m; pour tout ¢ > 1.
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Représentation graphique

Y1 Y2 Y3 e yr

Les états forment une chaine de Markov, les observations sont conditionnellement
indépendantes sachant les états.
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Exemples de représentations état-mesure
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Exemple 1 : modéle de niveau local

» Marche aléatoire avec bruit de mesure :
2
yr = e+, €~ N(0,07)

Pt = fe—1 + N, M~ N(O,U?,)

> Représentation état-mesure : Etat oy = p; (scalaire, m = 1).

Z=1, T=1, R=1, H=0¢% Q=02 d=c=0

» Ce modéle décompose la série en une tendance stochastique p; et un bruit de
mesure &;.
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Exemple 2 : tendance linéaire locale

» Le modéle s'écrit :

Y = e+, e =pt—1+ -1+, =11+

> Représentation état-mesure : Vecteur d'état oy = (g, 1)

Z=(1 0), T:<(1) i) R:((l) (1]>

2
_ 2 _ (o7 Y
H_Usa Q_(O 0_2)
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Exemple 3 : processus AR(1)

» Le modéle AR(1) :

Yt = QYr—1 + N, M~ N(vafz)a P <1

> Représentation état-mesure : Etat a; = y;.

> Equation de mesure : y; = a; (observation parfaite, H = 0),
» Equation d'état : oy = day_1 + 1.

Matrices : Z=1,T=¢, R=1, H=0, Q = o>

» Remarque : Ici, I'état est directement observable (H = 0). Le filtre de Kalman se
réduit a I'équation de récurrence de I'AR(1).
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Exemple 4 : processus AR(p)
» Le modéle AR(p) :

Yt = O1Yi—1 + P2Ys—2 + - + PpYi—p + M

> Représentation état-mesure (forme compagnon) : vecteur d'état

o = (Yo Yoty Yr—pt1)'-
$1 P2 - Pp_1 Pp
1 0 0 0
Z=(1 0 0, T=[0 1 0 0
0 O 1 0

» R=(1,0,...,0), H=0, Q = o>
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Exemple 5 : processus MA(q)

» Le modéle MA(q) :

yr =+ 01—+ oo+ -+ O0gmi—q

> Représentation état-mesure : Vecteur d'état oy = (1), Ne—1, - - ., —q)"
Z=(1 6, 6, 6,)
0 0 0 0
10 00
T=1]10 1 00 R—
0 0 10

» H=0, Q= o>
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Exemple 6 : processus ARMA(1,1)
> Le modéle ARMA(L,1) :

Y= y—1 +m + 01, || <1

> Représentation état-mesure (Harvey, 1989) : dimension r = max(1,1+1) =2,
vecteur d'état oy € R2.

Z=(1 0), T:<‘éS (1]> R:(é)

>» H=0,Q =o>.
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Vérification : ARMA(1,1)
> Avec oy = (a1, a2), I'équation d’état donne :

a1y = po i1+ o1+

ooy = Oy

» L'observation est y; = a1 4.

» En substituant a1 = 11 :
Yt = Py—1 + 01 +

On retrouve bien le modéle ARMA(1,1). L'état ;4 capture la dynamique AR,
aoy = On, capture |'effet MA retardé.
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Exemple 7 : processus ARMA(p,q) général

> Pour y, — 301 diye—i = e+ 35—y 0j7i—j, on pose r = max(p,q+1) et oy € R".

> Les matrices sont :

—
[an}
[es)

$1

p 0 1 0 1

th

T= : , R= .
¢or—1 0 O 1 0'

¢ 0 0 - 0 r—1

avec ¢j = 0 pour j > p et §; =0 pour j > q.
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Exemple 8 : composante saisonniére
» Saisonnalité stochastique (période s) :

Y+ Vo1 4+ YVemsir =wp, we ~ N(0,07)

> Représentation état-mesure : Vecteur d'état oy = (14, Y—1, - -+ » Yt—s+2)

(dimension s — 1).

-1 -1
1 0
Z=(10 0, T=|0 1
0 0
» R=(1,0,...,0),Q =02

-1 -1
0 0
0 O
1 0
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Le filtre de Kalman
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Objectif du filtrage

» Etant donné les observations Y; = {y1,v2,...,%:}, on cherche a :

» estimer |'état courant oy,
» quantifier I'incertitude de cette estimation,
» mettre a jour récursivement.

» Estimateurs optimaux :
> Prédiction : a;;_, = E[oy|Y;_1] avec variance Py;_,
> Filtrage : a;; = E[a;|Y;] avec variance Py;.
» Sous les hypothéses gaussiennes, ces estimateurs sont les BLUE et coincident avec
I'espérance conditionnelle.
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Filtre de Kalman : vue d'ensemble

Observation y;

Y
Prédiction .| Mise a jour .| Prédiction
> >
Qilt—1, Ptlt—l Q)¢ -Pt|t at+1|t7Pt+1|t

Le filtre alterne entre prédiction (projeter I'état via le modéle) et correction
(incorporer la nouvelle observation).
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Equations du filtre de Kalman (1/2)

> Initialisation : ag)g = ao, Pyg = Po.

» Etape de prédiction :

a1 =Tiay 11+ ¢
Py = TiP,_y, 1T} + R;Q:R;
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Equations du filtre de Kalman (2/2)

» Etape de mise a jour :

v =Yt — iy — dy
F,=ZiPy_Z; + H,
K, = Pt|t—1Z£Ft71
ayr = a1 + Ko
Py = (I — KiZ)Py; 4

(innovation)
(variance de |'innovation)

(gain de Kalman)

@@ el18cd8d — 22/56 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Preuve : lemme préliminaire
» Lemme (distribution conditionnelle gaussienne). Soit
R (R E-)
Yy Hy e By

m|y ~ N(Hx + Emyzy_yl(y - ﬂy)a g — Exyzz;ylzyx)

Alors :

» On applique ce lemme avec x = «; (état) et y = y, (observation),
conditionnellement 3 Y;_1.
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Preuve du lemme (1/2)

» |dée : Décomposer x en une partie qui dépend linéairement de y et un résidu
indépendant de y.

» Posons e =& — p, — Zryi);yl(y — py).

» Covariance avec y :

Cov(e,y) = Cov(x,y) — ExyE;leov(y, Y)
=S4y — B0y, By, =0

» Puisque (e, y) est gaussien (transformation linéaire de (x,vy)), covariance nulle
implique indépendance.
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Preuve du lemme (2/2)
» Onadoncx=p, + nyE?;yl(y — py) +e avece 1l y.

» Espérance conditionnelle :

Elxy] = o + 2y 2y, (Y — pty) + Ele] = po + 2oy 2y, (¥ — pay)
=0

> Variance conditionnelle. Puisque e = (z — p1,) — X0y 2, (y — py) et
Cov(e,y) =0:

V[m‘y] = V[e] = Cov(e, (93_”1‘) - Exyggjyl(y_“y))
= Cov(e,z)+0
=0 — Ty Xy, By O
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Preuve : étape de prédiction
> Hypothese de récurrence : a;1|Y;—1 ~ N(ay_1—1, P—1ji—1)-
» Par I'équation d'état : oy = Tyay 1 + ¢t + Rimpz.

» Espérance conditionnelle :

a1 = Ela|Yi1] = Thay 11 + e

» Variance conditionnelle (indépendance de 7 et Y;_;) :

Py = Viey|Yi 1] = TiP,_q, 1T + R:Q:R;
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Preuve : distribution jointe

» Par I'équation de mesure y; = Zio; + d; + €4, la distribution jointe de (o, y)
sachant Y;_7 est :

<at> Y, 1~N<( A1 > ( Pt\tq Pt|t1Z1{,>>
Yt - Ziay +di)  \Zi Py F;

ot Fy = Z;Py,_1Z; + H,.

» Calcul de la covariance :

Cov (o, yt|Yi—1) = Cov(ay, Zyay + &¢|Y; 1)
= Pt\t—lzé + Cov(ay, et) = I)t|t—1Z£
———

=0
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Preuve : étape de mise a jour

» En appliquant le lemme avec © = oy et y = 1, :

» Espérance conditionnelle :

ay; = Eloy|Yy] = a1 + I)t|t—1Z£Ft_1(yt — Ziay—y — dy)

= a1 + Ko
ol K; = Pt|t,1Z£Ft_l est le gain de Kalman.

» Variance conditionnelle :

Pt|t = Pt|t—1 - Pt\t—lzt,F;t_Ith)t\t—l
= - K Z;)Py;_,
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Interprétation du gain de Kalman

» Le gain K; = Pt|t_12£F[1 détermine le poids accordé a l'innovation

ayr = a1 + Ko

» Cas limites (scalaire) :
> H; — 0 (mesure précise) : K; — 1 = confiance totale a |'observation,

» H; — oo (mesure bruitée) : K; — 0 = on garde la prédiction,
» Pi;—1 — 0 (état bien connu) : K; — 0 = pas d'information nouvelle.
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Formule de Joseph

» Forme numériquement stable pour Py, :
Py =(I—-KZ)Py (I - K;Z;)' + K, H, K,

Cette forme garantit que P, reste symétrique et semi-définie positive.

> Démonstration de I'équivalence. En développant et utilisant K;F; = Py, 1Z] :

(I -KiZ)Py (I - KiZ;) + KiH K
=Py — KiZ;Py,_y — Py_1Z,K,; + K;F{K]
=Py 1 — KiZ Py
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Propriétés de |'innovation

> L'innovation v; = y; — Zia;;_; — dy est la partie de y; non prévisible a partir de
Yi 1.

» Propriétés fondamentales :
> E[v]Y;—1] =0,
> V[Utp/;t—l] = F3,
» Cov(v,vs) =0 pour t # s.
> La suite {v;}_; forme un bruit blanc (sous hypothéses gaussiennes). C'est
essentiel pour le calcul de la vraisemblance et les diagnostics du modéle.
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Preuve : innovations non corrélées

» Pour s < t, puisque v, est Yy-mesurable et Y, C Y;_q :

Cov(vy,vs) = E[vpvl]  (car E[vy] = E[vs] = 0)

» Par la loi des espérances itérées :

E[vv] = E[E[vv,]V;-1]]
= E[E[v¢|Y;—1]v,] (vs est Y;_i-mesurable)
=E[0-v.]=0
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Initialisation du filtre
» Cas stationnaire. Si les valeurs propres de T ont un module < 1 :
aglp =0, Py solution de P = TPT' + RQR'
C’est une équation de Lyapunov, résolue par :

vec(P) = (I - T ®T) 'vec(RQR/)

» Cas non stationnaire (initialisation diffuse) :
aop =0, Pyo=~rl aveck — o0
En pratique, on utilise le filtre de Kalman diffus exact (De Jong, 1991).
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Plan

Le lisseur de Kalman
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Motivation du lissage

> Le filtrage utilise Y; pour estimer ;. Le lissage utilise toute |'information
Yr={y1,...,yr}:

ayr = Elow|Yr], Pyr = View|Yr]

Filtrage

~

Le lisseur exploite I'information future : Py < Py;.
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Lisseur

> Initialisation : arp, Prr (issus du filtre).

» Récurrence arriere pourt =T —-1,T—2,...,0:
Jp = R5|t1}’+1Ptjrll|t (gain de lissage)
ayr = ayy + Ji(@p1r — ag)e)
Pyr = Py + Ji(Pyqr — Pyap)J;

» Complexité : une passe avant (filtre) + une passe arriére. Total : O(T'm?).
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Preuve du lisseur (1/2)

» Etape 1 : Le couple (o, a¢y1) sachant Y} suit :
() eer(n) 6, )
oyl Qii1)t TPy P
car Cov(ay, a+1|Y:) = Cov(ay, Tir104|Yy) = Pt|tTt’+1.
» Etape 2 : Par le lemme gaussien :

at\(at+17 Yi) ~ N(at|t + Jt(at+1 - at+1|t)7 Pt|t - JtPt+1\tJ£)

N _ / —1
ol Jp = Py Ty 1 Pryyye
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Preuve du lisseur (2/2)
> Etape 3 : Espérance lissée (loi des espérances itérées) :

ayr = Elou|Yr] = E[E[a| a1, V2] [Y7]
= Elay; + Ji(ous1 — @) Y7

= ay + Ji(ai iy — aap)

> Etape 4 : Variance lissée (loi de la variance totale) :

Pyr = E[V[ai|asr, Vil |[Y7] + VIE[a| et 1, V][ Y7]
=Py, — JiPyJ{ + JiPoyyyrJy
= Py + Ji(Piyyr — Pryap)J;
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Plan

Estimation par maximum de vraisemblance
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Paramétres a estimer

> Les matrices du systéme dépendent de paramétres inconnus 8 = (61,...,6x)’.
» Exemple ARMA(1,1) : 6 = (¢,0,02)".

» Objectif :
Oy = arg max L£(6;Yr)
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Décomposition de la vraisemblance

» Décomposition de I’erreur de prédiction :

T

Frs--yr;0) = fy1;0) [ F(welYi1; 6)

t=2

» Puisque y;|Y; 1 ~ N(Ziay—y +dy, Fy), ona:

1
Fltio) = @) PR e~ ol
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Log-vraisemblance

» La log-vraisemblance s'écrit :

L£(0)=—— log(27r - = Zlog |Fy| — thF vy

» Pour évaluer £(0), il suffit d'exécuter le filtre de Kalman qui produit les
innovations v; et leurs variances F;.
» Cas scalaire (p =1) :

T 2
1 Vi

T
T 1
= —Zlog2m) ==Y logF— =Y -
£(6) = = log(27) 2;1 og Fy 2;1 7
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Vraisemblance concentrée

> SiQ = 0’Q* et H=0?H?*, la condition du premier ordre par rapport a o

donne :
T

1
~2/ 0%\ __ */ k—1 %
o (9)—72 vy By vy
Pt
ou les quantités * sont calculées avec o2 = 1.

» On substitue 62 dans la log-vraisemblance pour obtenir la vraisemblance
concentrée L.(0*) qui ne dépend plus de o2.

» Cela réduit la dimension du probléme d'optimisation.
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Erreurs standard et diagnostics

» Matrice d’information de Fisher :
0%L(0)
0) = 5900

Asymptotiquement : T (Oyry — 6p) 4 N(0,Z(69)~1).
» Diagnostics sur les résidus standardisés e; = F;l/zvt :
» test de normalité : Jarque-Bera,

> test d'autocorrélation : Ljung-Box Q(m) =T(T +2) > -, Tﬁ—_’ik,
> test ARCH sur e?.
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Sélection de modéles

> Critére d'Akaike (AIC) : )
AIC = —2£(0) + 2k

» Critére bayésien de Schwarz (BIC) :
BIC = —2£(6) + klog(T)

ol k est le nombre de paramétres et T' le nombre d'observations.

» On sélectionne le modéle qui minimise le critére. Le BIC pénalise davantage la
complexité et est consistant.
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Plan

Prévisions
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Types de prévisions

» Prévision a un pas : §p 7 = Elyri1|Yr].
» Prévision a h pas : Jrpr = Elyrin|Yr].

> Stratégie : Continuer les équations de prédiction au-deld de T, sans mise a jour.
Obs. Prév.

-~ 5 55— {
T T+h
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Equations de prévision

» Prévision de I'état (pour h > 1) :

aripnr = Trin@rip_1r + Crth

/ /
Pr 1 =TrinPron1rTry, + RrnQrinRyyy,

Initialisation : a7, Py (issus du filtre).

» Prévision de |I'observation :

Y7+hT = ZT+hOT4hT + AT11

!
Frinr = ZrinPrinrZron, + Hryn
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Intervalles de prévision

» Intervalle a (1 — )% (cas scalaire) :

YT +nT £ Zajer/ Franr

Pour o = 0,05 : 20,025 ~ 1,96.

> L'intervalle s'élargit avec h car :

» [|'incertitude sur |'état se propage,
» les chocs futurs s'accumulent.

» Pour un modele stationnaire : Frp, 7 — variance inconditionnelle quand h — co.
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Formules explicites (coefficients constants)

» Si T, =T, etc., I'état prévu est :

h—1
aripT = ThaT\T + Z T’c
§=0
» La variance de prévision est :
h—1
Prypr =T"Ppp(T'" + Y T/RQR/(T'Y
7=0
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Exemple : prévision AR(1)
» Rappel : T=¢, Z=1, R=1, H=0, Q =02, état a; = v;.

» Puisque H =0 : apr = yr et Prip = 0. Donc :

Irnr = "yr

. Loe s . _ 2\~ h—1 125 T
> Variance de prévision : Pr_ 1 =0 ijo ¢, soit :

1— ¢2h J2
— 42 N —
FT+h|T =0 1_ d)g hooo 1 — ¢2 - V[yt]
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Exemple

prévision AR(1) — illustration

Observations

i QT+h|T = ¢>hyT
T

+ 1.,‘)()‘(7)

1—¢=

Paramétres : ¢ = 0,8, 02 = 1, yr = 2. La prévision décroit géométriquement et I'IC converge

vers |'lC inconditionnel £1,960/+/1 — ¢2.
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Exemple : prévision MA(1)

00 1\ |
» Rappel : T = (1 0), Z=(10), R= (0> état oy = (g, m—1)'.
» La matrice T est nilpotente : T? = 0. Pour h > 1 :

0 aq T|T sih=1

ZT"ap i = ’
o {0 Sih > 2

ot ay pp = E[nr|Yr] est I'innovation filtrée.

» Variance de prévision (h > 2) : T" = 0 et les seuls termes non nuls sont
7=0,1:

Fripyr = Z(0?’RR' + o> TRR'T')Z' = o*(1+ 0%) = V]y]
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Exemple : prévision MA(1) — illustration

Observations

P +1,960v1 + 62

YJr4+nT = 0 pour h > 2
T

Paramétres : §# = 0,6, 02 = 1. La prévision tombe & zéro dés h = 2 et I'lIC atteint
immédiatement la variance inconditionnelle o2(1 + 6?).
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Prévision ARMA(p,q)

> Pour un ARMA(p,q), I'état filtré ar contient toute I'information nécessaire a la

prévision :
~ h
Yrynr = ZT ar|r

» Exemple ARMA(1,1). Avec T = <¢ 1) :

00
Th — (%" ¢>};_1) (h>1)

g _ h h—1
Donc : Yrynr = ¢ arrir + ¢" “aa 17
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Résumé

> Les modéles état-mesure unifient ARMA, tendances et saisonnalité.

> Le filtre de Kalman fournit une estimation récursive optimale de I'état.

» Le lisseur de Kalman exploite toute |'information disponible.

» Le maximum de vraisemblance s'obtient via la décomposition de I'innovation.

> Les prévisions sont calculées par prolongation des équations de prédiction.
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