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Motivation

▶ Les modèles état-mesure constituent un cadre général permettant de :
▶ unifier de nombreux modèles de séries temporelles (ARMA, tendances, saisonnalité),
▶ traiter les observations manquantes de manière naturelle,
▶ estimer des composantes non observables (tendance, cycle),
▶ effectuer des prévisions optimales via le filtre de Kalman.

▶ Idée centrale : Distinguer ce que l’on observe (équation de mesure) de la
dynamique latente (équation d’état) qui gouverne le système.
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Formulation générale

▶ Équation de mesure (observation) :

yt = Ztαt + dt + εt, εt ∼ N(0,Ht)

▶ Équation d’état (transition) :

αt = Ttαt−1 + ct +Rtηt, ηt ∼ N(0,Qt)

▶ Dimensions : yt ∈ Rp (observations), αt ∈ Rm (état), εt ∈ Rp, ηt ∈ Rr.
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Notations et hypothèses

▶ Matrices du système :
▶ Zt : matrice de mesure (p×m),
▶ Tt : matrice de transition (m×m),
▶ Rt : matrice de sélection des perturbations (m× r),
▶ Ht : matrice de variance des erreurs de mesure (p× p),
▶ Qt : matrice de variance des perturbations d’état (r × r),
▶ dt, ct : termes déterministes.

▶ Hypothèses fondamentales :
▶ E[εt] = 0, E[ηt] = 0,
▶ εt et ηs sont indépendants pour tout t, s,
▶ condition initiale : α0 ∼ N(a0,P0),
▶ α0 est indépendant de εt et ηt pour tout t ≥ 1.
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Représentation graphique

α0 α1 α2 α3 · · · αT

y1 y2 y3 · · · yT

T1 T2 T3

Z1 Z2 Z3 ZT

Les états forment une chaîne de Markov, les observations sont conditionnellement
indépendantes sachant les états.
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Exemple 1 : modèle de niveau local
▶ Marche aléatoire avec bruit de mesure :

yt = µt + εt, εt ∼ N(0, σ2
ε)

µt = µt−1 + ηt, ηt ∼ N(0, σ2
η)

▶ Représentation état-mesure : État αt = µt (scalaire, m = 1).

Z = 1, T = 1, R = 1, H = σ2
ε , Q = σ2

η, d = c = 0

▶ Ce modèle décompose la série en une tendance stochastique µt et un bruit de
mesure εt.
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Exemple 2 : tendance linéaire locale

▶ Le modèle s’écrit :

yt = µt + εt, µt = µt−1 + νt−1 + ηt, νt = νt−1 + ζt

▶ Représentation état-mesure : Vecteur d’état αt = (µt, νt)
′.

Z =
(
1 0

)
, T =

(
1 1
0 1

)
, R =

(
1 0
0 1

)

H = σ2
ε , Q =

(
σ2
η 0

0 σ2
ζ

)
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Exemple 3 : processus AR(1)

▶ Le modèle AR(1) :

yt = ϕyt−1 + ηt, ηt ∼ N(0, σ2), |ϕ| < 1

▶ Représentation état-mesure : État αt = yt.
▶ Équation de mesure : yt = αt (observation parfaite, H = 0),
▶ Équation d’état : αt = ϕαt−1 + ηt.

Matrices : Z = 1, T = ϕ, R = 1, H = 0, Q = σ2.

▶ Remarque : Ici, l’état est directement observable (H = 0). Le filtre de Kalman se
réduit à l’équation de récurrence de l’AR(1).
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Exemple 4 : processus AR(p)
▶ Le modèle AR(p) :

yt = ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ηt

▶ Représentation état-mesure (forme compagnon) : vecteur d’état
αt = (yt, yt−1, . . . , yt−p+1)

′.

Z =
(
1 0 · · · 0

)
, T =


ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0



▶ R = (1, 0, . . . , 0)′, H = 0, Q = σ2.
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Exemple 5 : processus MA(q)
▶ Le modèle MA(q) :

yt = ηt + θ1ηt−1 + θ2ηt−2 + · · ·+ θqηt−q

▶ Représentation état-mesure : Vecteur d’état αt = (ηt, ηt−1, . . . , ηt−q)
′.

Z =
(
1 θ1 θ2 · · · θq

)

T =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 , R =


1
0
...
0



▶ H = 0, Q = σ2.
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Exemple 6 : processus ARMA(1,1)

▶ Le modèle ARMA(1,1) :

yt = ϕyt−1 + ηt + θηt−1, |ϕ| < 1

▶ Représentation état-mesure (Harvey, 1989) : dimension r = max(1, 1 + 1) = 2,
vecteur d’état αt ∈ R2.

Z =
(
1 0

)
, T =

(
ϕ 1
0 0

)
, R =

(
1
θ

)

▶ H = 0, Q = σ2.
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Vérification : ARMA(1,1)
▶ Avec αt = (α1,t, α2,t)

′, l’équation d’état donne :

α1,t = ϕα1,t−1 + α2,t−1 + ηt

α2,t = θηt

▶ L’observation est yt = α1,t.

▶ En substituant α2,t−1 = θηt−1 :

yt = ϕyt−1 + θηt−1 + ηt

On retrouve bien le modèle ARMA(1,1). L’état α1,t capture la dynamique AR,
α2,t = θηt capture l’effet MA retardé.
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Exemple 7 : processus ARMA(p,q) général

▶ Pour yt−
∑p

i=1 ϕiyt−i = ηt+
∑q

j=1 θjηt−j , on pose r = max(p, q+1) et αt ∈ Rr.

▶ Les matrices sont :

T =


ϕ1 1 0 · · · 0
ϕ2 0 1 · · · 0
...

. . .
ϕr−1 0 0 · · · 1
ϕr 0 0 · · · 0

 , R =


1
θ1
...

θr−1


avec ϕj = 0 pour j > p et θj = 0 pour j > q.

▶ Z = (1, 0, . . . , 0), H = 0, Q = σ2.
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Exemple 8 : composante saisonnière
▶ Saisonnalité stochastique (période s) :

γt + γt−1 + · · ·+ γt−s+1 = ωt, ωt ∼ N(0, σ2
ω)

▶ Représentation état-mesure : Vecteur d’état αt = (γt, γt−1, . . . , γt−s+2)
′

(dimension s− 1).

Z =
(
1 0 · · · 0

)
, T =


−1 −1 · · · −1 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0



▶ R = (1, 0, . . . , 0)′, Q = σ2
ω.
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Objectif du filtrage

▶ Étant donné les observations Yt = {y1, y2, . . . , yt}, on cherche à :
▶ estimer l’état courant αt,
▶ quantifier l’incertitude de cette estimation,
▶ mettre à jour récursivement.

▶ Estimateurs optimaux :
▶ Prédiction : at|t−1 = E[αt|Yt−1] avec variance Pt|t−1,
▶ Filtrage : at|t = E[αt|Yt] avec variance Pt|t.

▶ Sous les hypothèses gaussiennes, ces estimateurs sont les BLUE et coïncident avec
l’espérance conditionnelle.
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Filtre de Kalman : vue d’ensemble

Prédiction
at|t−1,Pt|t−1

Mise à jour
at|t,Pt|t

Prédiction
at+1|t,Pt+1|t

Observation yt

Le filtre alterne entre prédiction (projeter l’état via le modèle) et correction
(incorporer la nouvelle observation).
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Équations du filtre de Kalman (1/2)

▶ Initialisation : a0|0 = a0, P0|0 = P0.

▶ Étape de prédiction :

at|t−1 = Ttat−1|t−1 + ct

Pt|t−1 = TtPt−1|t−1T
′
t +RtQtR

′
t
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Équations du filtre de Kalman (2/2)

▶ Étape de mise à jour :

vt = yt −Ztat|t−1 − dt (innovation)

Ft = ZtPt|t−1Z
′
t +Ht (variance de l’innovation)

Kt = Pt|t−1Z
′
tF

−1
t (gain de Kalman)

at|t = at|t−1 +Ktvt

Pt|t = (I −KtZt)Pt|t−1
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Preuve : lemme préliminaire

▶ Lemme (distribution conditionnelle gaussienne). Soit(
x
y

)
∼ N

((
µx

µy

)
,

(
Σxx Σxy

Σyx Σyy

))
Alors :

x|y ∼ N
(
µx +ΣxyΣ

−1
yy (y − µy), Σxx −ΣxyΣ

−1
yy Σyx

)

▶ On applique ce lemme avec x = αt (état) et y = yt (observation),
conditionnellement à Yt−1.

cz e18cd8d – 23/56 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Preuve du lemme (1/2)

▶ Idée : Décomposer x en une partie qui dépend linéairement de y et un résidu
indépendant de y.

▶ Posons e = x− µx −ΣxyΣ
−1
yy (y − µy).

▶ Covariance avec y :

Cov(e,y) = Cov(x,y)−ΣxyΣ
−1
yy Cov(y,y)

= Σxy −ΣxyΣ
−1
yy Σyy = 0

▶ Puisque (e,y) est gaussien (transformation linéaire de (x,y)), covariance nulle
implique indépendance.
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Preuve du lemme (2/2)
▶ On a donc x = µx +ΣxyΣ

−1
yy (y − µy) + e, avec e ⊥⊥ y.

▶ Espérance conditionnelle :

E[x|y] = µx +ΣxyΣ
−1
yy (y − µy) + E[e]︸︷︷︸

=0

= µx +ΣxyΣ
−1
yy (y − µy)

▶ Variance conditionnelle. Puisque e = (x− µx)−ΣxyΣ
−1
yy (y − µy) et

Cov(e,y) = 0 :

V[x|y] = V[e] = Cov
(
e, (x−µx)−ΣxyΣ

−1
yy (y−µy)

)
= Cov(e,x) + 0

= Σxx −ΣxyΣ
−1
yy Σyx □
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Preuve : étape de prédiction

▶ Hypothèse de récurrence : αt−1|Yt−1 ∼ N(at−1|t−1,Pt−1|t−1).

▶ Par l’équation d’état : αt = Ttαt−1 + ct +Rtηt.

▶ Espérance conditionnelle :

at|t−1 = E[αt|Yt−1] = Ttat−1|t−1 + ct

▶ Variance conditionnelle (indépendance de ηt et Yt−1) :

Pt|t−1 = V[αt|Yt−1] = TtPt−1|t−1T
′
t +RtQtR

′
t

cz e18cd8d – 26/56 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Preuve : distribution jointe

▶ Par l’équation de mesure yt = Ztαt + dt + εt, la distribution jointe de (αt,yt)
sachant Yt−1 est :(

αt

yt

) ∣∣∣∣Yt−1 ∼ N

((
at|t−1

Ztat|t−1 + dt

)
,

(
Pt|t−1 Pt|t−1Z

′
t

ZtPt|t−1 Ft

))
où Ft = ZtPt|t−1Z

′
t +Ht.

▶ Calcul de la covariance :

Cov(αt,yt|Yt−1) = Cov(αt,Ztαt + εt|Yt−1)

= Pt|t−1Z
′
t +Cov(αt, εt)︸ ︷︷ ︸

=0

= Pt|t−1Z
′
t
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Preuve : étape de mise à jour

▶ En appliquant le lemme avec x = αt et y = yt :

▶ Espérance conditionnelle :

at|t = E[αt|Yt] = at|t−1 + Pt|t−1Z
′
tF

−1
t (yt −Ztat|t−1 − dt)

= at|t−1 +Ktvt

où Kt = Pt|t−1Z
′
tF

−1
t est le gain de Kalman.

▶ Variance conditionnelle :

Pt|t = Pt|t−1 − Pt|t−1Z
′
tF

−1
t ZtPt|t−1

= (I −KtZt)Pt|t−1
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Interprétation du gain de Kalman

▶ Le gain Kt = Pt|t−1Z
′
tF

−1
t détermine le poids accordé à l’innovation :

at|t = at|t−1 +Ktvt

▶ Cas limites (scalaire) :
▶ Ht → 0 (mesure précise) : Kt → 1 ⇒ confiance totale à l’observation,
▶ Ht → ∞ (mesure bruitée) : Kt → 0 ⇒ on garde la prédiction,
▶ Pt|t−1 → 0 (état bien connu) : Kt → 0 ⇒ pas d’information nouvelle.
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Formule de Joseph

▶ Forme numériquement stable pour Pt|t :

Pt|t = (I −KtZt)Pt|t−1(I −KtZt)
′ +KtHtK

′
t

Cette forme garantit que Pt|t reste symétrique et semi-définie positive.

▶ Démonstration de l’équivalence. En développant et utilisant KtFt = Pt|t−1Z
′
t :

(I −KtZt)Pt|t−1(I −KtZt)
′ +KtHtK

′
t

= Pt|t−1 −KtZtPt|t−1 − Pt|t−1Z
′
tK

′
t +KtFtK

′
t

= Pt|t−1 −KtZtPt|t−1
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Propriétés de l’innovation

▶ L’innovation vt = yt −Ztat|t−1 − dt est la partie de yt non prévisible à partir de
Yt−1.

▶ Propriétés fondamentales :
▶ E[vt|Yt−1] = 0,
▶ V[vt|Yt−1] = Ft,
▶ Cov(vt,vs) = 0 pour t ̸= s.

▶ La suite {vt}Tt=1 forme un bruit blanc (sous hypothèses gaussiennes). C’est
essentiel pour le calcul de la vraisemblance et les diagnostics du modèle.
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Preuve : innovations non corrélées

▶ Pour s < t, puisque vs est Ys-mesurable et Ys ⊂ Yt−1 :

Cov(vt,vs) = E[vtv′
s] (car E[vt] = E[vs] = 0)

▶ Par la loi des espérances itérées :

E[vtv′
s] = E

[
E[vtv′

s|Yt−1]
]

= E
[
E[vt|Yt−1]v

′
s

]
(vs est Yt−1-mesurable)

= E[0 · v′
s] = 0
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Initialisation du filtre

▶ Cas stationnaire. Si les valeurs propres de T ont un module < 1 :

a0|0 = 0, P0|0 solution de P = TPT ′ +RQR′

C’est une équation de Lyapunov, résolue par :

vec(P ) = (I − T ⊗ T )−1vec(RQR′)

▶ Cas non stationnaire (initialisation diffuse) :

a0|0 = 0, P0|0 = κI avec κ → ∞

En pratique, on utilise le filtre de Kalman diffus exact (De Jong, 1991).
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Motivation du lissage

▶ Le filtrage utilise Yt pour estimer αt. Le lissage utilise toute l’information
YT = {y1, . . . , yT } :

at|T = E[αt|YT ], Pt|T = V[αt|YT ]

t
1 t T

Filtrage
Lissage

Le lisseur exploite l’information future : Pt|T ≤ Pt|t.
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Lisseur

▶ Initialisation : aT |T , PT |T (issus du filtre).

▶ Récurrence arrière pour t = T − 1, T − 2, . . . , 0 :

Jt = Pt|tT
′
t+1P

−1
t+1|t (gain de lissage)

at|T = at|t + Jt(at+1|T − at+1|t)

Pt|T = Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t

▶ Complexité : une passe avant (filtre) + une passe arrière. Total : O(Tm3).
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Preuve du lisseur (1/2)

▶ Étape 1 : Le couple (αt,αt+1) sachant Yt suit :(
αt

αt+1

) ∣∣∣∣Yt ∼ N

((
at|t
at+1|t

)
,

(
Pt|t Pt|tT

′
t+1

Tt+1Pt|t Pt+1|t

))
car Cov(αt,αt+1|Yt) = Cov(αt,Tt+1αt|Yt) = Pt|tT

′
t+1.

▶ Étape 2 : Par le lemme gaussien :

αt|(αt+1, Yt) ∼ N
(
at|t + Jt(αt+1 − at+1|t), Pt|t − JtPt+1|tJ

′
t

)
où Jt = Pt|tT

′
t+1P

−1
t+1|t.
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Preuve du lisseur (2/2)

▶ Étape 3 : Espérance lissée (loi des espérances itérées) :

at|T = E[αt|YT ] = E[E[αt|αt+1, Yt]|YT ]
= E

[
at|t + Jt(αt+1 − at+1|t)|YT

]
= at|t + Jt(at+1|T − at+1|t)

▶ Étape 4 : Variance lissée (loi de la variance totale) :

Pt|T = E[V[αt|αt+1, Yt]|YT ] + V[E[αt|αt+1, Yt]|YT ]
= Pt|t − JtPt+1|tJ

′
t + JtPt+1|TJ

′
t

= Pt|t + Jt(Pt+1|T − Pt+1|t)J
′
t
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Paramètres à estimer

▶ Les matrices du système dépendent de paramètres inconnus θ = (θ1, . . . , θk)
′.

▶ Exemple ARMA(1,1) : θ = (ϕ, θ, σ2)′.

▶ Objectif :
θ̂MV = argmax

θ
L(θ;YT )
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Décomposition de la vraisemblance

▶ Décomposition de l’erreur de prédiction :

f(y1, . . . , yT ;θ) = f(y1;θ)

T∏
t=2

f(yt|Yt−1;θ)

▶ Puisque yt|Yt−1 ∼ N(Ztat|t−1 + dt,Ft), on a :

f(yt|Yt−1) = (2π)−p/2|Ft|−1/2 exp

(
−1

2
v′
tF

−1
t vt

)

cz e18cd8d – 41/56 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Log-vraisemblance
▶ La log-vraisemblance s’écrit :

L(θ) = −pT

2
log(2π)− 1

2

T∑
t=1

log |Ft| −
1

2

T∑
t=1

v′
tF

−1
t vt

▶ Pour évaluer L(θ), il suffit d’exécuter le filtre de Kalman qui produit les
innovations vt et leurs variances Ft.

▶ Cas scalaire (p = 1) :

L(θ) = −T

2
log(2π)− 1

2

T∑
t=1

logFt −
1

2

T∑
t=1

v2t
Ft
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Vraisemblance concentrée

▶ Si Q = σ2Q∗ et H = σ2H∗, la condition du premier ordre par rapport à σ2

donne :

σ̂2(θ∗) =
1

pT

T∑
t=1

v∗′t F
∗−1
t v∗t

où les quantités ∗ sont calculées avec σ2 = 1.

▶ On substitue σ̂2 dans la log-vraisemblance pour obtenir la vraisemblance
concentrée Lc(θ

∗) qui ne dépend plus de σ2.

▶ Cela réduit la dimension du problème d’optimisation.
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Erreurs standard et diagnostics

▶ Matrice d’information de Fisher :

I(θ) = −∂2L(θ)
∂θ ∂θ′

Asymptotiquement :
√
T (θ̂MV − θ0)

d−→ N(0, I(θ0)−1).

▶ Diagnostics sur les résidus standardisés et = F
−1/2
t vt :

▶ test de normalité : Jarque-Bera,
▶ test d’autocorrélation : Ljung-Box Q(m) = T (T + 2)

∑m
k=1

ρ̂2
k

T−k ,
▶ test ARCH sur e2t .
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Sélection de modèles

▶ Critère d’Akaike (AIC) :
AIC = −2L(θ̂) + 2k

▶ Critère bayésien de Schwarz (BIC) :

BIC = −2L(θ̂) + k log(T )

où k est le nombre de paramètres et T le nombre d’observations.

▶ On sélectionne le modèle qui minimise le critère. Le BIC pénalise davantage la
complexité et est consistant.
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Types de prévisions

▶ Prévision à un pas : ŷT+1|T = E[yT+1|YT ].

▶ Prévision à h pas : ŷT+h|T = E[yT+h|YT ].

▶ Stratégie : Continuer les équations de prédiction au-delà de T , sans mise à jour.

t
T T+h

Obs. Prév.
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Équations de prévision

▶ Prévision de l’état (pour h ≥ 1) :

aT+h|T = TT+haT+h−1|T + cT+h

PT+h|T = TT+hPT+h−1|TT
′
T+h +RT+hQT+hR

′
T+h

Initialisation : aT |T , PT |T (issus du filtre).

▶ Prévision de l’observation :

ŷT+h|T = ZT+haT+h|T + dT+h

FT+h|T = ZT+hPT+h|TZ
′
T+h +HT+h
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Intervalles de prévision

▶ Intervalle à (1− α)% (cas scalaire) :

ŷT+h|T ± zα/2

√
FT+h|T

Pour α = 0,05 : z0,025 ≈ 1,96.

▶ L’intervalle s’élargit avec h car :
▶ l’incertitude sur l’état se propage,
▶ les chocs futurs s’accumulent.

▶ Pour un modèle stationnaire : FT+h|T → variance inconditionnelle quand h → ∞.
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Formules explicites (coefficients constants)

▶ Si Tt = T , etc., l’état prévu est :

aT+h|T = T haT |T +

h−1∑
j=0

T jc

▶ La variance de prévision est :

PT+h|T = T hPT |T (T
′)h +

h−1∑
j=0

T jRQR′(T ′)j
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Exemple : prévision AR(1)

▶ Rappel : T = ϕ, Z = 1, R = 1, H = 0, Q = σ2, état αt = yt.

▶ Puisque H = 0 : aT |T = yT et PT |T = 0. Donc :

ŷT+h|T = ϕhyT

▶ Variance de prévision : PT+h|T = σ2
∑h−1

j=0 ϕ
2j , soit :

FT+h|T = σ2 1− ϕ2h

1− ϕ2
−−−→
h→∞

σ2

1− ϕ2
= V[yt]
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Exemple : prévision AR(1) – illustration

± 1,96σ√
1−ϕ2

T

Observations

ŷT+h|T = ϕhyT

Paramètres : ϕ = 0,8, σ2 = 1, yT = 2. La prévision décroît géométriquement et l’IC converge
vers l’IC inconditionnel ±1,96σ/

√
1− ϕ2.
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Exemple : prévision MA(1)

▶ Rappel : T =

(
0 0
1 0

)
, Z =

(
1 θ

)
, R =

(
1
0

)
, état αt = (ηt, ηt−1)

′.

▶ La matrice T est nilpotente : T 2 = 0. Pour h ≥ 1 :

ZT haT |T =

{
θ a1,T |T si h = 1

0 si h ≥ 2

où a1,T |T = E[ηT |YT ] est l’innovation filtrée.

▶ Variance de prévision (h ≥ 2) : T h = 0 et les seuls termes non nuls sont
j = 0, 1 :

FT+h|T = Z
(
σ2RR′ + σ2TRR′T ′)Z ′ = σ2(1 + θ2) = V[yt]
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Exemple : prévision MA(1) – illustration

±1,96σ
√
1 + θ2

T

Observations

ŷT+h|T = 0 pour h ≥ 2

Paramètres : θ = 0,6, σ2 = 1. La prévision tombe à zéro dès h = 2 et l’IC atteint
immédiatement la variance inconditionnelle σ2(1 + θ2).

cz e18cd8d – 54/56 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Prévision ARMA(p,q)

▶ Pour un ARMA(p,q), l’état filtré aT |T contient toute l’information nécessaire à la
prévision :

ŷT+h|T = ZT haT |T

▶ Exemple ARMA(1,1). Avec T =

(
ϕ 1
0 0

)
:

T h =

(
ϕh ϕh−1

0 0

)
(h ≥ 1)

Donc : ŷT+h|T = ϕha1,T |T + ϕh−1a2,T |T .
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Résumé

▶ Les modèles état-mesure unifient ARMA, tendances et saisonnalité.

▶ Le filtre de Kalman fournit une estimation récursive optimale de l’état.

▶ Le lisseur de Kalman exploite toute l’information disponible.

▶ Le maximum de vraisemblance s’obtient via la décomposition de l’innovation.

▶ Les prévisions sont calculées par prolongation des équations de prédiction.
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