Estimation des modéles ARMA
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Le probléme de I'estimation

» Soit un modéle ARMA(p, q) :

Yi=c+ g1 Vi1 4+ -+ ¢pYip+er +bige—1+ -+ 04504

avec &; un bruit blanc.

» Les chapitres précédents ont montré comment calculer les moments du processus
(autocovariances, autocorrélations, prévisions linéaires) en fonction des paramétres.

» Probléme : Comment estimer les paramétres (c, ¢1,. .., ¢p, 01, .. .,0,,02) & partir
d'un échantillon d'observations (y1,y2,...,yr) ?
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Principe du maximum de vraisemblance

» On note 8 = (c,d1,...,¢p,01,...,04,0%) le vecteur des paramétres.
» On suppose que &; ~ i.i.d. N(0,0?).

» On calcule la densité jointe de I'échantillon observé :
fye ey, YT, yr—1,. ., y156)

vue comme une fonction de 0 pour les données observées.

> L'estimateur du maximum de vraisemblance (EMV) est la valeur 8 qui
maximise cette fonction, c'est-a-dire la valeur des paramétres pour laquelle
I'échantillon observé est le plus probable.

@@ el8cd8d — 5/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Hypotheése de normalité

» L'hypothése de normalité sur &; est forte, mais |'estimation résultante reste
pertinente méme si elle est violée.

» Si le vrai processus est non gaussien, les estimateurs obtenus en maximisant la
vraisemblance gaussienne restent convergents. On parle alors d'estimateur de
qguasi-maximum de vraisemblance.

» En revanche, les erreurs standard calculées sous |'hypothése de normalité peuvent
ne pas étre correctes si les données sont non gaussiennes.
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Décomposition en erreurs de prévision

> La densité jointe peut &tre factorisée en utilisant la régle de Bayes :

fYT,...,Yl(yTv"’ayh ) fY1 y17 HfYﬂYt 1 yt’yt 15 )

» La log-vraisemblance est donc :

T

L(6) =1og fy, (y1:0) + Y _log fy; v, (velye-1;6)
t=2

> Cette décomposition est connue sous le nom de décomposition en erreurs de
prévision (prediction-error decomposition).
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Vraisemblance d'un processus AR(1) gaussien
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Le modéle AR(1) gaussien

» On considére le processus AR(1) gaussien :
Yi=c+ oY1 +&

avec g; ~ i.i.d. N(0,0?) et |¢| < 1.
» Le vecteur de paramétres est 8 = (c, ¢, 02)".
» L'espérance du processus stationnaire est u = ¢/(1 — ¢).

» La variance du processus stationnaire est o2/(1 — ¢?).
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Densité de |la premiére observation

» Puisque ¢; est gaussien, Y7 est également gaussien avec :

2
BV =p=1g VMI={Tgp
» La densité de Y7 est donc :
o1 [ /o)
fvi(y1;0) = 2702 /(1 — 02 exp 202/(1 — ¢?)
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Densités conditionnelles

» Conditionnellement 3 Y; 1 = y; 1, 0n a:

Yi=c+ oY1+ NN(c—i—(byt_l,aQ)

» La densité conditionnelle est :

—(yr — ¢ — dyi—1)*
exp

Tvayieo, (Yelye-1;0) = ot 52

» Cette expression est valable pourt =2,3,...,T.
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Log-vraisemblance exacte

» La log-vraisemblance exacte de I'AR(1) gaussien est :

. 1 o2 —c/(1—¢)}?
E@):_Qbﬂ%ﬂ_zk%<1—&>__w;ﬂ%¥_#2}

T-1 —1
5 log(0?)

T
Z yt—C— Pyr—1)?
t—2

» On regroupe les termes pour obtenir :

log(2m) —

L£(0) = —% log(27) — %log(aQ) + %log(l —¢%)

(=97 <y1— ¢ )2_2T:(yt—c—¢yt1)2

202
t=2
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Log-vraisemblance conditionnelle

» Une alternative consiste a conditionner sur la premiére observation y; et a
maximiser :

T

T—-1 T — e — bur1)2

L(0) = — 5 log(2m) — 10g E: (ye 6202¢yt 1)
=2

P> La maximisation par rapport a c et ¢ revient a minimiser :

T
Z i — ¢ — dyr-1)?
t=2

» C'est un probléme de moindres carrés ordinaires (MCO) : régression de y; sur
une constante et y;_.

@@ el18cd8d — 13/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Estimateurs conditionnels du maximum de vraisemblance

> Les estimateurs conditionnels de ¢ et ¢ sont donnés par la formule des MCO :
; ~1
[G]Z[T_l Zyt—l] [ DU ]
¢ Yy il [y

ou les sommes portent surt =2,3,...,T.

» L'estimateur conditionnel de o2 est la variance résiduelle de la régression :

T
1 .
o 1 A 2
0" =7 ;2 (ye — ¢ — ¢yr-1)

» Pour T grand, les estimateurs exact et conditionnel convergent vers la méme
distribution asymptotique (si |¢| < 1).
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Vraisemblance exacte et conditionnelle : comparaison

» La vraisemblance exacte nécessite le terme supplémentaire

$log(1—¢%) — %(yl — p)? lie a la premiére observation.

» La vraisemblance conditionnelle ignore ce terme et traite y; comme déterministe.

> Si T est grand, la contribution de la premiére observation est négligeable.

» Si|¢| < 1, les deux approches donnent des estimateurs convergents. Si |¢| > 1,
la vraisemblance conditionnelle ne fournit pas d'estimateurs convergents car la
densité de Y7 n'est pas correctement spécifiée.
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Expression vectorielle de la vraisemblance (1/6)
» On peut dériver la vraisemblance d'une maniére alternative en considérant le

vecteur des T observations :

y = (1,92, -, yr)

» Ce vecteur peut é&tre vu comme une unique réalisation d'un vecteur gaussien de
dimension T :

wa(/,l,,ﬂ)

» Le vecteur d'espérances est p = (u, 1, ..., )" avec u=c/(1 — ¢).

» La matrice de variance-covariance €2 est une matrice (7' x T') dont I'élément (4, j)
est 'autocovariance (|7 — j|).
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Expression vectorielle de la vraisemblance (2/6)

» Pour I'AR(1), I'autocovariance est y(h) = a2¢/" /(1 — $?), donc :

ou

Ers

Q=0%V
1 ¢ ¢?
¢ 1 )
¢? ) 1
¢T:— 1 ¢T:—2 ¢T:—3

¢T—1'
¢T—2
¢T—3

» V est une matrice de Toeplitz symétrique définie positive.
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Expression vectorielle de la vraisemblance (3/6)

» La densité du vecteur gaussien y s'écrit :

Fx(y;0) = 2r) 729 2 exp[- Ly — w)'Q Hy — p)]

» La log-vraisemblance est donc :

T 1 1 -
L(0) = —5 log(27) + ; log |2 1!*§(yfu)’ﬂ Yy —n)

» Cette expression fait intervenir I'inverse et le déterminant de la matrice € de taille
(T x T). En apparence, le calcul est coliteux, mais la structure de € permet de le
simplifier.
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Expression vectorielle de la vraisemblance (4/6)

» On introduit la matrice triangulaire inférieure L de taille (7' x T) :

[V/1—¢2 0 0 --- 0 O]
—¢ 1 0 --- 0 0
L= 0 - 1 -+ 0 0
|0 0 0 - —¢ 1]
» On peut montrer que :
LL=V!

et donc Q1 =52Vl =s2L/L.
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Expression vectorielle de la vraisemblance (5/6)
» Puisque L est triangulaire, son déterminant est le produit des éléments diagonaux :

= —%2.1-1---1= _ A2
L=y1-¢2-1-1.--1=1—-¢

T-1

» Donc |L'L| = [V} =1-¢?% et:

1 _ 1 _ _ T 1
§1Og|9 = 5108§(0' vl = —glog(UZ) + §log(1 —¢?)

» On définit le vecteur transformé y = L(y — ), de sorte que :

_ 1 _,.
@—MQIW—MZEﬂ&
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Expression vectorielle de la vraisemblance (6/6)
» Les composantes de y = L(y — ) sont :

G1=V1—02(y1 —p), Ge=(y—p) — d(ye_1 — p) pourt>2

» En substituant u =c¢/(1 — ¢) :
Yt =Yt —C— dyr—1 pourt >2

Ce sont les erreurs de prévision !

» La log-vraisemblance s'écrit alors :

T
L£(6) = —g log(2m) — %mg(a )+ log(l — ¢?) — Z

> On retrouve exactement |’ expresswn de la log-vraisemblance WC]§§d9Pteﬂ%% pggmwer 2026
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Vraisemblance d'un processus AR(p) gaussien
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Le modeéle AR(p) gaussien

» On considére le processus AR(p) gaussien :
Yi=c+pYi1+ @Yo+ -+ Y p+ ¢

avec g; ~ i.i.d. N(0,0?).
> Le vecteur de paramétres est 8 = (¢, ¢1, do, ..., ¢p, 02).

» L'espérance du processus stationnaire est :

Cc

T l—di—dr— &

7
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Construction de la vraisemblance

» Les p premiéres observations (yi,...,¥yp) suivent une loi gaussienne multivariée
2
N(pp,0°Vyp).

» Pour t > p, conditionnellement aux p observations précédentes :

YilVii1, ..., Yip~ N(c+ dryi14 -+ dpli—p, 02)

> La log-vraisemblance exacte est :

T T 1
0) = —=log(27) — = log(c?) + = log|V;*
L(6) 5 log(2m) — o log(0%) + 5 log [V,

1 _
T 952 (yp — l‘p)lvp I(YP — Hp)
T
. Z (yr —c—drys—1— - — ¢pyt—p)2
2
e 20
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Estimateurs conditionnels pour I'’AR(p)

» La log-vraisemblance conditionnelle (sur les p premiéres observations) est :

T—p

£0(8) = —— P log(om) — 1

log(c®)

B Z (ye —c—dr1ye1— - — dpr—p)*

202

» La maximisation revient & minimiser :
T

S (e —c— b1yt — - — Spii—yp)?

t=p+1

» C'est la somme des carrés des résidus d'une régression MCO de y; sur une

constante et ses p valeurs retardées.
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Estimateur de la variance des innovations

» L'estimateur conditionnel de o2 est le résidu quadratique moyen :

T

“T7_, Z (yr — ¢ — leyt—l - Gf;zyt—Q - Qgpyt—p)2

t=p+1

> Les estimateurs exact et conditionnel ont la méme distribution asymptotique.

» Résultat important : Pour un processus AR(p), les estimateurs conditionnels du
maximum de vraisemblance sont identiques aux estimateurs des MCO.
L'estimation d'un AR(p) est donc particuliérement simple.
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Estimation par quasi-maximum de vraisemblance
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Processus non gaussiens

» Que se passe-t-il si le processus n'est pas gaussien ?

» La régression MCO de y; sur une constante et ses p retards fournit une estimation
convergente de la projection linéaire :

E(Yi|Yi-1,Yiea, ..., Yip)

pourvu que le processus soit ergodique pour les moments d'ordre 2.

» Cette régression MCO maximise aussi la log-vraisemblance gaussienne
conditionnelle. Méme si le processus n'est pas gaussien, maximiser cette fonction
fournit des estimateurs convergents.
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Estimateur de quasi-maximum de vraisemblance

» Un estimateur obtenu en maximisant une vraisemblance mal spécifiée (par
exemple, gaussienne alors que les données ne le sont pas) est appelé estimateur de
quasi-maximum de vraisemblance (QMLE).

> Propriété : Le QMLE fournit des estimateurs convergents des paramétres

(P15, bp)-
» Cependant, les erreurs standard calculées sous I'hypothése gaussienne peuvent ne
pas &tre correctes. Il faut utiliser un estimateur robuste de la matrice de

variance-covariance.

» En pratique, si les données sont non gaussiennes, une transformation préalable (par
exemple, le logarithme) peut rapprocher la distribution de la normalité.
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Transformations Box-Cox

» Pour une variable positive Y;, Box et Cox (1964) proposent la famille de

transformations :
v -1

SiA#0
y Y _ 7

logY; siA=0

» On choisit A de sorte que Yt()‘) soit bien approximé par un processus ARMA
gaussien.

» En pratique, pour les séries économiques qui croissent dans le temps (PIB, prix),
on utilise souvent :
y = log Xy — log X; 1

c'est-a-dire le taux de croissance en log.
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Vraisemblance d'un processus MA(1) gaussien

@@ e18cd8d — 31/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Le modéle MA(1) gaussien

» On considére le processus MA(1) gaussien :
Yi=p+e 401

avec g; ~ i.i.d. N(0,0?).
» Le vecteur de paramétres est 8 = (u, 0, 0%)’.

» Contrairement a I'AR, la vraisemblance du MA ne se réduit pas d un probléme de
moindres carrés.

» Deux approches : la vraisemblance conditionnelle (plus simple) et la
vraisemblance exacte (plus précise en petit échantillon).
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Vraisemblance conditionnelle du MA(1) (1/2)

» On conditionne sur la valeur initiale g = 0. Sachant ;_1, la densité de Y; est :

—(yt — p — Oe41)?
exp

fYt|Et—1(yt’€t—1;0) = g2 902

» Sachant ¢g = 0, on déduit ¢ de |'observation ¥ :

E1=Y1 —

» Plus généralement, les innovations sont calculées récursivement :
et =yt — p— et

pour t =1,2,...,T, en partant de gg = 0.
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Vraisemblance conditionnelle du MA(1) (2/2)

» La log-vraisemblance conditionnelle est :

T 22
L.(0)=—— log(27r) - = log Z t

ol g = yr — b — Bep_1 avec gg = 0.

» La log-vraisemblance est une fonction non linéaire de p et 0 : pas de solution
analytique explicite.

» La maximisation requiert une optimisation numérique.

» Condition d’inversibilité : L'approximation conditionnelle est valide si || < 1. Si
'optimisation conduit a |A] > 1, il faut recommencer avec 6!
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Effet de la condition initiale

» En développant la récurrence ey =y — pt — 041 -

er=(yr — 1) — O(ye—1 — ) + 0> (Y2 — p) — -
+ (=D (g — ) + (—1)'6'0

> Si|0| <1, I'effet de g9 = 0 décroit géométriquement : (—1)!9'eq — 0.
» Pour T suffisamment grand, |'approximation g = 0 est inoffensive.

» Si |0] est proche de 1, les premiéres innovations &, sont mal estimées, ce qui peut
affecter |'estimation en petit échantillon.
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Vraisemblance exacte du MA(1) (1/6)

» La vraisemblance exacte traite les T' observations comme un vecteur gaussien

y = (y1,...,yr) deloi N(u, ).

» La matrice de variance-covariance €2 a une structure tridiagonale :

1+ 62 0 0

0 1+ 62 0
Q=02| 0 0  1+62
0 0 0

» La log-vraisemblance exacte est :

0
0
0

1+ 6%

T 1 1 _
£(0) = — log(2m) — 5 log |2 = S (y — p)'Q Yy —n)
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Vraisemblance exacte du MA(1) (2/6)

» On cherche la factorisation triangulaire 2 = ADA’ ou :
» A est triangulaire inférieure avec des 1 sur la diagonale,
» D est diagonale avec des éléments strictement positifs.
> Puisque € est tridiagonale, A est bidiagonale : seuls les éléments diagonaux et
sous-diagonaux sont non nuls.

» Onnote Sy =1+ 624 0%+ .- + 021 |a somme géométrique. Ona Sy =1 et :

1_921&

Si=1"g

sif?#£1
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Vraisemblance exacte du MA(1) (3/6)

» On obtient A et D par élimination de Gauss sur /o2

> Etape 1 : Le pivot est d; = (1 + 62) = S3/S;. On élimine le terme sous-diagonal

0 . . . . 0 _ 051
0 en soustrayant 1 fois la premiére ligne. Cela donne ag; = Hee = 5

» Etape 2 : Le nouveau pivot est :

6> (14+6%)2—62 1+6*4+6* Ss

dy = (1+6%) — = — — 23
2=+ -1 1+ 62 1+ 62 S,
Le multiplicateur est ags = % = %.
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Vraisemblance exacte du MA(1) (4/6)

» En poursuivant, on montre par récurrence que pourt =1,...,7 :
St 0.5
dy = et |apy1 =
St ’ StJrl

» Explicitement, les matrices sont (en factorisant o2 dans D) :

0
1

05y

S3

)

Sa

St41

St
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Vraisemblance exacte du MA(1) (5/6)

» Le vecteur transformé ¥y = A~!(y — p) a pour composantes :

_ _ 051 _
Y1 =91 — K U = (yr — p) — St Yi—1 pourt > 2
t

» Puisque |A| = 1 (triangulaire avec des 1 sur la diagonale) et @ = ADA’ :

S, S
Q| = D[ = 2Tl_[ =g 72?1 =o' Sriy

car le produit est télescopique.
» De plus :
T g2
(y-—w)Q  (y—p=3D'y=>_ N
t=1
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Vraisemblance exacte du MA(1) (6/6)

» La log-vraisemblance exacte s'écrit alors :

T -2
L£(0) = —5 10g(27r - = Zlog (dy) — Z Ztt

avec dy = 02Sy,1/S; et Sy =14+ 62+ ... 46201,
> Cette expression est valide pour toute valeur de 6 (pas seulement [0 < 1).

» On montre que si § = # maximise cette expression, alors ~! donne la méme
valeur. On retient la solution inversible : |0| < 1.

» Pour la vraisemblance conditionnelle, cette propriété n'est pas garantie.
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Vraisemblance d'un processus MA(q) gaussien
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Le modéle MA(q) gaussien

» On considére le processus MA(q) gaussien :

Yi=p+e+0bie4—1+0cio0+ -+ 04604

avec g; ~ i.i.d. N(0,0?).
> Le vecteur de paramétres est 6 = (u, 61, ...,0,,02).

» La matrice de variance-covariance €2 est une matrice bande de largeur ¢ : les
autocovariances v sont nulles pour k > q.
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Vraisemblance conditionnelle du MA(q)

» Onposecyg=c_1="--=¢c_g41 = 0.

» Les innovations sont calculées par récurrence :
et =yt —p— g1 — g9 — - —Oger—q

pourt=1,2,...,T.

» La log-vraisemblance conditionnelle est :

2

T T
L.(0)= 5 log(2m) — — log Z t

» Cette approximation est valide si toutes les racines de 1 + 612+ --- 4+ 60,29 =0
sont de module > 1 (inversibilité).
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Vraisemblance exacte du MA(q)
» La structure bande de Q permet d'utiliser la factorisation triangulaire 2 = ADA’.

» A est une matrice triangulaire inférieure bande : a;; = 0 pour i > ¢ + j.

> Les éléments de y = A~!(y — ) se calculent récursivement par résolution d’un
systéme triangulaire.

» La log-vraisemblance exacte est :

T -2
£(6) = ——10g(27r — = Zlog (dy) — Z C%
=1

» Contrairement a la vraisemblance conditionnelle, |'expression exacte est valide pour
toute valeur de (61, ...,6,).
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Vraisemblance d'un processus ARMA(p, ¢) gaussien
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Le modéle ARMA(p, q) gaussien

» Le modéle ARMA(p, q) gaussien s'écrit :
Vi=c+d1Yea4 -+ 0pYipter+0igi 1+ + 0

avec g; ~ i.i.d. N(0,02).
» Le vecteur de paramétres est 0 = (¢, ¢y, ..., ¢p, 01,...,04,0%).

» Le nombre de paramétres est p + g + 2.
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Vraisemblance conditionnelle du ARMA(p, q)

» On fixe les conditions initiales :
» vo = (Y0,Y—1,--.,Y—p+1)" aux valeurs observées ou a I'espérance,

> gy = (60,5717 ce ,E,qul)/ =0.
» Les innovations sont calculées récursivement :
Et=Yt—C—P1yi—1 — - — PpYr—p — b181—1 — - — 0481

pourt=1,2,...,T.

» La log-vraisemblance conditionnelle est :

L.(0)=—— log(27r) - = log

||Mﬂ
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Conditions initiales alternatives

» Approche Box-Jenkins : On fixe ys = ¢/(1 —¢1 — -+ — ¢p) pour s <0 et
€s = 0 pour s < 0.

» Approche alternative : On fixe les € a zéro et les y a leurs valeurs observées. On
commence l'itération a t =p+1 :
&p = Ep-1= " =&pqt1 =0

La log-vraisemblance conditionnelle est alors :

T

T—p T — €2

£c(6) =~ log(2m) - log(a®) = > 5%
t=p+1

» Ces approximations sont valides si toutes les racines de ¢(z) = 0 et #(z) = 0 sont

de module > 1.
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Vraisemblance exacte

» L'approche la plus rigoureuse utilise le filtre de Kalman pour calculer la
vraisemblance exacte.

> Le filtre de Kalman fournit, de maniére récursive, les prévisions optimales et les
erreurs de prévision, ce qui permet de construire la vraisemblance par
décomposition en erreurs de prévision.

> Alternativement, on peut utiliser la factorisation triangulaire de la matrice de
variance-covariance 2, comme dans le cas MA.

» Les deux approches donnent le méme résultat mais différent en termes
d'implémentation informatique.
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Optimisation numérique
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Le probléme d'optimisation
» La log-vraisemblance est une fonction non linéaire de 6. Il faut trouver :

~

0 = arg max L£(0)

» Exception : pour un processus AR pur, les estimateurs ont une solution analytique

(MCO).

» Dans le cas général (MA ou ARMA), il faut recourir & des méthodes
d'optimisation numérique.

» |dée : calculer numériquement £(@) pour différentes valeurs de 6 et chercher la
valeur qui maximise cette fonction.
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Recherche sur grille (grid search)

» La méthode la plus simple : évaluer £(0) sur une grille de valeurs de 6.

» Exemple : Pour un AR(1) avec ¢ = 0 et 02 = 1, on évalue £(¢) pour
¢ € {—0.9,-0.8,...,0.8,0.9}.

» On raffine la grille autour du maximum.
> Avantage : Simple et permet de visualiser la surface de vraisemblance.

» Inconvénient : Devient impraticable quand le nombre de paramétres augmente
(malédiction de la dimension).
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Gradient et méthode de plus forte pente

» On définit le gradient de la log-vraisemblance :

g(0) = agg))

C'est un vecteur qui pointe dans la direction d'augmentation la plus rapide de L.

» Méthode de plus forte pente (steepest ascent) :
0t =9 4 o, g(0™)

ol o, > 0 est le pas de I'algorithme.

> On itére jusqu'a convergence : ||t — 0| < e ou ||g(8™)| < e.
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Calcul du gradient
» Le gradient peut étre calculé de deux maniéres.
» Analytiquement : On différencie £(0) par rapport a chaque élément de 8. C'est

possible pour les modéles AR et MA, mais les expressions deviennent complexes
pour les modéles ARMA.

» Numériquement : On approxime les dérivées partielles par différences finies :

OL _ L(6 + he;) — L(6 — he;)
00; 2h

ol e; est le -éme vecteur de la base canonique et h est un petit incrément.

» Le gradient numérique est facile 8 programmer mais introduit une erreur
d'approximation.
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Maxima locaux et globaux

» Si la log-vraisemblance est unimodale, les méthodes itératives convergent vers le
maximum global, quel que soit le point de départ.

» En général, £(0) peut avoir plusieurs maxima locaux. L'algorithme converge alors
vers le maximum local le plus proche du point de départ.

> Stratégies pratiques :
» Essayer plusieurs points de départ différents

» Utiliser d'abord une recherche sur grille grossiére, puis affiner avec une méthode de
gradient

» Comparer les valeurs de £(8) obtenues a partir de différents points de départ
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Plan

Distribution asymptotique et tests
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La fonction de score
» On appelle fonction de score le gradient de la log-vraisemblance :

C'est un vecteur de dimension (p+ ¢+ 2) x 1.

» Sous des conditions de régularité (échange dérivée/intégrale), le score a une
espérance nulle évaluée en la vraie valeur :

Ee, s(60)] =0

» Intuition : a la vraie valeur des paramétres, la log-vraisemblance est en moyenne a
son maximum.
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Matrice d'information de Fisher

» La matrice d’information de Fisher est définie par :

Z(6) = Vg[s(0)] = Eg[s(0)s(8)']

» Sous les conditions de régularité, on a I'égalité de I'information :

2
106) = ~Eo| Sy rgy | = ~EolH(O)]

oti H(0) est la matrice hessienne de la log-vraisemblance.

» La matrice d'information mesure la quantité d'information que I'échantillon
contient sur les paramétres.
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Borne de Cramér-Rao

» Borne de Cramér-Rao : Pour tout estimateur sans biais 8 de 0 :
V(0) >17(0)"!

au sens des matrices (la différence est semi-définie positive).

» L'estimateur du maximum de vraisemblance atteint cette borne
asymptotiquement : c'est I'estimateur le plus précis (asymptotiquement) parmi les
estimateurs réguliers.

» Plus la courbure de la log-vraisemblance est forte autour de 6y (information de
Fisher élevée), plus |'estimation est précise.
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Distribution asymptotique de 'EMV

» Sous des conditions de régularité (stationnarité, ergodicité, identifiabilité, 6
intérieur 3 |'espace des paramétres), 'EMV vérifie :

» Convergence :
026, quand T — o

» Normalité asymptotique :

VT (6-60) % N (0, Z(60) ")

» En d'autres termes, pour T grand :
~ 1 _
0~ N(Oo, Tz(ao) 1)
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Erreurs standard et intervalles de confiance
» En pratique, on estime la matrice de variance-covariance en remplacant la matrice

d'information par la hessienne observée :
-1
gé]

- (o]~ [0

» L'erreur standard du i-éme paramétre est :

se(d;) = [@(é)}”
» Un intervalle de confiance a 95% pour 6; est :
0; + 1,96 x se(6;)

@@ e18cd8d — 62/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Estimateur OPG

» Une alternative a la hessienne est |'estimateur OPG (outer product of gradients).
On décompose la log-vraisemblance en contributions individuelles :

T
£(6) =" 0(6)
t=1

» La matrice d'information est estimée par :

— 0(,(8) D0,(6)
00 00’

Topc =

» Cet estimateur est facile a calculer (pas besoin de dérivées secondes), mais peut
&tre moins précis en petit échantillon.
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Cas du quasi-maximum de vraisemblance

» Si le modéle est mal spécifié (par exemple, on maximise une vraisemblance
gaussienne alors que les erreurs ne sont pas gaussiennes), I'égalité de I'information
ne tient plus :

A = —E[H(6))] # B = E[s(60)s(60)’]

» La distribution asymptotique du QMLE est alors :

VT (6-60) % N(0, A"'BA™Y)

» La matrice A~'B A~! est appelée matrice sandwich (ou estimateur de
White/Huber). Il faut I'utiliser pour obtenir des erreurs standard robustes.
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Estimation de |la matrice sandwich

» En pratique, on estime :

> Et:

» |’'estimateur robuste de la variance est alors :
O 1 o
Viob(0) = TA*B A1

» Si le modéle est correctement spécifié, A ~ B et on retrouve |'estimateur
classique.
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Test de Wald

» On souhaite tester I'hypothése linéaire Hy : RO = r ot R est une matrice (r x k)
derangretk=p+q+2.

» La statistique de Wald est :

W= (RO x) [RTGOR]| (RO -1)

» Sous Hj et asymptotiquement :

W S 3 (r)

> Avantage : Ne nécessite que |'estimation du modéle non contraint.
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Test de Wald : cas scalaire

» Pour tester Hy : 0; = 69 (un seul paramétre), la statistique de Wald se simplifie en

la ¢-statistique au carré :
. 2
0; — 69
W= 2= ) L2
se(6;)

» De maniére équivalente, la t-statistique :

> Exemple : Pour tester si un coefficient AR ou MA est significativement différent
de zéro, on calcule t = 0;/se(f;) et on rejette Hy si [t| > 1,96 au seuil de 5%.
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Test du rapport de vraisemblance
> On estime le modéle sous Hy (contraint, 8) et sous H; (non contraint, ).

> La statistique du rapport de vraisemblance (/ikelihood ratio) est :

LR=2 [.c(é) - c(é)}

» Sous Hj et asymptotiquement :

LR % \2(r)

> Avantage : Ne nécessite pas le calcul de la matrice de variance-covariance.

» Inconvénient : Requiert |'estimation des deux modéles (contraint et non
contraint).
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Test du rapport de vraisemblance : exemple

» Test d'un AR(1) contre un AR(2) :
» Modéle non contraint : Y; =c+ ¢1Yi 1 + ¢2Y; o + &
» Modeéle contraint (Hyp : ¢ =0) : Yy =c+ ¢1Yi_1 + &4

» On calcule : R -
LR=2 [LAR(Q) (@) - »CAR(I)(O)}

» On rejette Hy si LR > X%o,gs = 3,84 (seuil a 5%, 1 degré de liberte).

> Ce test est directement applicable a la sélection de I'ordre d'un modéle ARMA.

@@ e18cd8d — 69/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Test du multiplicateur de Lagrange

» Le test du multiplicateur de Lagrange (ou test du score) utilise uniquement
I'estimation sous Hj : . 3 )
LM =s(0)Z(6)"'s(0)

ol s(0) est le score évalué a I'estimateur contraint.

» Sous Hj et asymptotiquement :

> Intuition : Si Hj est vraie, le score s(8) doit étre proche de zéro. Un score éleve
(en norme) fournit une preuve contre H.

» Avantage : Ne nécessite que |'estimation du modéle contraint (le plus simple).
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Comparaison des trois tests

> Les trois tests (Wald, LR, LM) sont asymptotiquement équivalents sous Hj : ils
ont la méme distribution limite x2(r).

» En échantillon fini, ils peuvent donner des résultats différents. On montre que :
W >LR>LM

Le test de Wald rejette le plus souvent, le test LM le moins.

» Choix pratique :
» Test de Wald : facile si le modéle non contraint est déja estimé,

» Test LR : le plus couramment utilisé pour comparer des modéles emboités,
» Test LM : utile quand le modéle contraint est beaucoup plus simple.
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Critéres d'information

» Pour comparer des modéles non emboités, on utilise des critéres d'information
qui pénalisent la complexité.

» Critére d’Akaike (AIC, 1973) :
AIC = —2£(6) + 2k
ol k est le nombre de paramétres estimés.

» Critére bayésien de Schwarz (BIC, 1978) :

BIC = —2£() + klog T

» On sélectionne le modéle qui minimise le critére. Le BIC pénalise davantage la
complexité (logT > 2 dés que T > 8) et sélectionne des modéles plus

parcimonieux.
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Critéres d'information : propriétés

» AIC : Minimise asymptotiquement |'erreur quadratique moyenne de prévision.
Tend a sélectionner des modéles légérement sur-paramétrés.

» BIC : Sélectionne le vrai modéle avec probabilité tendant vers 1 quand T' — o
(consistant). Tend a sélectionner des modéles sous-paramétrés en petit
échantillon.

» En pratique :
» Si I'objectif est la prévision, I'AIC est souvent préféré.
» Si I'objectif est I'identification du vrai modéle, le BIC est plus adapté.

» On estime plusieurs modéles ARMA(p, ¢) pour p,q € {0,1,...,Pmax} €t on retient
celui qui minimise le critére choisi.
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Plan

Identification et sélection de modéles
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Approche de Box-Jenkins
» Box et Jenkins (1976) proposent une procédure en quatre étapes :

» (1) Transformation : Transformer les données pour obtenir une série
approximativement stationnaire (différenciation, logarithme).

» (2) Identification : Choisir les ordres p et ¢ a |'aide des autocorrélations et
autocorrélations partielles empiriques.

» (3) Estimation : Estimer les paramétres ¢(L) et 6(L) par maximum de
vraisemblance.

» (4) Diagnostic : Vérifier que le modéle estimé est compatible avec les données
observées.
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Autocorrélations empiriques

» L'autocorrélation empirique d'ordre j est :

L Y
Pj ==
! Y0
ou
1 & 1 <&
Y= T Z e =)= —9), §= szt
t=j+1 t=1

» Si les données proviennent d'un processus MA(q), alors p; = 0 pour j > ¢. On
s'attend donc a ce que p; =~ 0 pour j > q.

» Sous |'hypothése de bruit blanc, p; est approximativement distribué selon
N(0,1/T). L'intervalle de confiance a 95% est +2/v/T.

@@ el18cd8d — 76/80 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Autocorrélations partielles empiriques

» L'autocorrélation partielle empirique d'ordre m est le dernier coefficient o?,(f;”)

dans la régression :

) (m)

Y1 = C+ @gm Y+ Gy g1+ Gy g + &

» Si les données proviennent d'un processus AR(p), alors I'autocorrélation partielle
est nulle pour m > p :
aﬁ,ﬁ”):() pour m > p

» Sous cette hypothése, V(éz,(fln)) ~ 1/T et l'intervalle de confiance a 95% est

+2/VT.
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Reégles d'identification

» Processus MA(q) : Les autocorrélations j; sont significativement non nulles pour
j < q, puis deviennent nulles au-dela. Les autocorrélations partielles décroissent
progressivement.

» Processus AR(p) : Les autocorrélations partielles &ET) sont significativement non
nulles pour m < p, puis deviennent nulles au-dela. Les autocorrélations décroissent
progressivement (mélange d'exponentielles ou de sinusoides amorties).

» Processus ARMA(p, ¢q) : Les deux fonctions décroissent progressivement.
L'identification est plus difficile et demande souvent d'essayer plusieurs
spécifications.
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Philosophie de la parcimonie

» Box et Jenkins insistent sur le principe de parcimonie : utiliser le moins de
paramétres possible.

» Un modéle avec trop de paramétres :
> s'ajuste bien aux données historiques (sur-ajustement),
» mais prévoit mal hors échantillon.
» La découverte que des modéles ARMA avec de petites valeurs de p et ¢ produisent
souvent de meilleures prévisions que les grands modéles macroéconométriques a
été un résultat marquant.

» En pratique, des valeurs de p et q inférieures ou égales a 2 ou 3 suffisent pour la
plupart des applications.
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Résumé

v

Le maximum de vraisemblance est le principe d'estimation dominant.
Pour les processus AR purs, |'estimation se réduit aux MCO.

Pour les processus MA et ARMA, la vraisemblance est non linéaire et nécessite
une optimisation numérique.

La vraisemblance conditionnelle simplifie les calculs mais nécessite |'inversibilité.
La vraisemblance exacte est plus robuste.

L'EMV est asymptotiquement normal avec une variance atteignant la borne de
Cramér-Rao.

Les tests de Wald, du rapport de vraisemblance et du multiplicateur de
Lagrange permettent de tester des hypothéses sur les paramétres.

Les critéres AIC et BIC complétent I'identification par les autocorrélations pour la
sélection de modéles.
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