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Le problème de l’estimation

▶ Soit un modèle ARMA(p, q) :

Yt = c+ ϕ1Yt−1 + · · ·+ ϕpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q

avec εt un bruit blanc.

▶ Les chapitres précédents ont montré comment calculer les moments du processus
(autocovariances, autocorrélations, prévisions linéaires) en fonction des paramètres.

▶ Problème : Comment estimer les paramètres (c, ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2) à partir

d’un échantillon d’observations (y1, y2, . . . , yT ) ?
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Principe du maximum de vraisemblance

▶ On note θ = (c, ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2)′ le vecteur des paramètres.

▶ On suppose que εt ∼ i.i.d. N(0, σ2).

▶ On calcule la densité jointe de l’échantillon observé :

fYT ,YT−1,...,Y1(yT , yT−1, . . . , y1;θ)

vue comme une fonction de θ pour les données observées.

▶ L’estimateur du maximum de vraisemblance (EMV) est la valeur θ̂ qui
maximise cette fonction, c’est-à-dire la valeur des paramètres pour laquelle
l’échantillon observé est le plus probable.
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Hypothèse de normalité

▶ L’hypothèse de normalité sur εt est forte, mais l’estimation résultante reste
pertinente même si elle est violée.

▶ Si le vrai processus est non gaussien, les estimateurs obtenus en maximisant la
vraisemblance gaussienne restent convergents. On parle alors d’estimateur de
quasi-maximum de vraisemblance.

▶ En revanche, les erreurs standard calculées sous l’hypothèse de normalité peuvent
ne pas être correctes si les données sont non gaussiennes.
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Décomposition en erreurs de prévision
▶ La densité jointe peut être factorisée en utilisant la règle de Bayes :

fYT ,...,Y1(yT , . . . , y1;θ) = fY1(y1;θ) ·
T∏
t=2

fYt|Yt−1
(yt|yt−1;θ)

▶ La log-vraisemblance est donc :

L(θ) = log fY1(y1;θ) +

T∑
t=2

log fYt|Yt−1
(yt|yt−1;θ)

▶ Cette décomposition est connue sous le nom de décomposition en erreurs de
prévision (prediction-error decomposition).
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Le modèle AR(1) gaussien

▶ On considère le processus AR(1) gaussien :

Yt = c+ ϕYt−1 + εt

avec εt ∼ i.i.d. N(0, σ2) et |ϕ| < 1.

▶ Le vecteur de paramètres est θ = (c, ϕ, σ2)′.

▶ L’espérance du processus stationnaire est µ = c/(1− ϕ).

▶ La variance du processus stationnaire est σ2/(1− ϕ2).
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Densité de la première observation

▶ Puisque εt est gaussien, Y1 est également gaussien avec :

E[Y1] = µ =
c

1− ϕ
, V[Y1] =

σ2

1− ϕ2

▶ La densité de Y1 est donc :

fY1(y1;θ) =
1√

2πσ2/(1− ϕ2)
exp

[
−{y1 − c/(1− ϕ)}2

2σ2/(1− ϕ2)

]
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Densités conditionnelles

▶ Conditionnellement à Yt−1 = yt−1, on a :

Yt = c+ ϕYt−1 + εt ∼ N(c+ ϕyt−1, σ
2)

▶ La densité conditionnelle est :

fYt|Yt−1
(yt|yt−1;θ) =

1√
2πσ2

exp

[
−(yt − c− ϕyt−1)

2

2σ2

]

▶ Cette expression est valable pour t = 2, 3, . . . , T .
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Log-vraisemblance exacte
▶ La log-vraisemblance exacte de l’AR(1) gaussien est :

L(θ) = −1

2
log(2π)− 1

2
log

(
σ2

1− ϕ2

)
− {y1 − c/(1− ϕ)}2

2σ2/(1− ϕ2)

− T − 1

2
log(2π)− T − 1

2
log(σ2)

−
T∑
t=2

(yt − c− ϕyt−1)
2

2σ2

▶ On regroupe les termes pour obtenir :

L(θ) = −T

2
log(2π)− T

2
log(σ2) +

1

2
log(1− ϕ2)

− (1− ϕ2)

2σ2

(
y1 −

c

1− ϕ

)2

−
T∑
t=2

(yt − c− ϕyt−1)
2

2σ2

cz e18cd8d – 12/80 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Log-vraisemblance conditionnelle
▶ Une alternative consiste à conditionner sur la première observation y1 et à

maximiser :

Lc(θ) = −T − 1

2
log(2π)− T − 1

2
log(σ2)−

T∑
t=2

(yt − c− ϕyt−1)
2

2σ2

▶ La maximisation par rapport à c et ϕ revient à minimiser :

T∑
t=2

(yt − c− ϕyt−1)
2

▶ C’est un problème de moindres carrés ordinaires (MCO) : régression de yt sur
une constante et yt−1.
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Estimateurs conditionnels du maximum de vraisemblance
▶ Les estimateurs conditionnels de c et ϕ sont donnés par la formule des MCO :[

ĉ

ϕ̂

]
=

[
T − 1

∑
yt−1∑

yt−1
∑

y2t−1

]−1 [ ∑
yt∑

yt−1yt

]
où les sommes portent sur t = 2, 3, . . . , T .

▶ L’estimateur conditionnel de σ2 est la variance résiduelle de la régression :

σ̂2 =
1

T − 1

T∑
t=2

(yt − ĉ− ϕ̂yt−1)
2

▶ Pour T grand, les estimateurs exact et conditionnel convergent vers la même
distribution asymptotique (si |ϕ| < 1).
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Vraisemblance exacte et conditionnelle : comparaison

▶ La vraisemblance exacte nécessite le terme supplémentaire
1
2 log(1− ϕ2)− (1−ϕ2)

2σ2 (y1 − µ)2 lié à la première observation.

▶ La vraisemblance conditionnelle ignore ce terme et traite y1 comme déterministe.

▶ Si T est grand, la contribution de la première observation est négligeable.

▶ Si |ϕ| < 1, les deux approches donnent des estimateurs convergents. Si |ϕ| > 1,
la vraisemblance conditionnelle ne fournit pas d’estimateurs convergents car la
densité de Y1 n’est pas correctement spécifiée.
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Expression vectorielle de la vraisemblance (1/6)
▶ On peut dériver la vraisemblance d’une manière alternative en considérant le

vecteur des T observations :

y = (y1, y2, . . . , yT )
′

▶ Ce vecteur peut être vu comme une unique réalisation d’un vecteur gaussien de
dimension T :

y ∼ N(µ,Ω)

▶ Le vecteur d’espérances est µ = (µ, µ, . . . , µ)′ avec µ = c/(1− ϕ).

▶ La matrice de variance-covariance Ω est une matrice (T × T ) dont l’élément (i, j)
est l’autocovariance γ(|i− j|).
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Expression vectorielle de la vraisemblance (2/6)

▶ Pour l’AR(1), l’autocovariance est γ(h) = σ2ϕ|h|/(1− ϕ2), donc :

Ω = σ2V

où

V =
1

1− ϕ2


1 ϕ ϕ2 · · · ϕT−1

ϕ 1 ϕ · · · ϕT−2

ϕ2 ϕ 1 · · · ϕT−3

...
...

...
. . .

...
ϕT−1 ϕT−2 ϕT−3 · · · 1



▶ V est une matrice de Toeplitz symétrique définie positive.
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Expression vectorielle de la vraisemblance (3/6)
▶ La densité du vecteur gaussien y s’écrit :

fY(y;θ) = (2π)−T/2|Ω|−1/2 exp
[
−1

2(y − µ)′Ω−1(y − µ)
]

▶ La log-vraisemblance est donc :

L(θ) = −T

2
log(2π) +

1

2
log |Ω−1| − 1

2
(y − µ)′Ω−1(y − µ)

▶ Cette expression fait intervenir l’inverse et le déterminant de la matrice Ω de taille
(T × T ). En apparence, le calcul est coûteux, mais la structure de Ω permet de le
simplifier.
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Expression vectorielle de la vraisemblance (4/6)

▶ On introduit la matrice triangulaire inférieure L de taille (T × T ) :

L =



√
1− ϕ2 0 0 · · · 0 0
−ϕ 1 0 · · · 0 0
0 −ϕ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · −ϕ 1



▶ On peut montrer que :
L′L = V−1

et donc Ω−1 = σ−2V−1 = σ−2L′L.
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Expression vectorielle de la vraisemblance (5/6)
▶ Puisque L est triangulaire, son déterminant est le produit des éléments diagonaux :

|L| =
√
1− ϕ2 · 1 · 1 · · · 1︸ ︷︷ ︸

T−1

=
√

1− ϕ2

▶ Donc |L′L| = |V−1| = 1− ϕ2, et :

1

2
log |Ω−1| = 1

2
log(σ−2T · |V−1|) = −T

2
log(σ2) +

1

2
log(1− ϕ2)

▶ On définit le vecteur transformé ỹ = L(y − µ), de sorte que :

(y − µ)′Ω−1(y − µ) =
1

σ2
ỹ′ỹ
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Expression vectorielle de la vraisemblance (6/6)
▶ Les composantes de ỹ = L(y − µ) sont :

ỹ1 =
√
1− ϕ2 (y1 − µ), ỹt = (yt − µ)− ϕ(yt−1 − µ) pour t ≥ 2

▶ En substituant µ = c/(1− ϕ) :

ỹt = yt − c− ϕyt−1 pour t ≥ 2

Ce sont les erreurs de prévision !

▶ La log-vraisemblance s’écrit alors :

L(θ) = −T

2
log(2π)− T

2
log(σ2) +

1

2
log(1− ϕ2)− 1

2σ2

T∑
t=1

ỹ2t

▶ On retrouve exactement l’expression de la log-vraisemblance exacte obtenue par la
décomposition en erreurs de prévision.
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Le modèle AR(p) gaussien

▶ On considère le processus AR(p) gaussien :

Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + · · ·+ ϕpYt−p + εt

avec εt ∼ i.i.d. N(0, σ2).

▶ Le vecteur de paramètres est θ = (c, ϕ1, ϕ2, . . . , ϕp, σ
2)′.

▶ L’espérance du processus stationnaire est :

µ =
c

1− ϕ1 − ϕ2 − · · · − ϕp
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Construction de la vraisemblance
▶ Les p premières observations (y1, . . . , yp) suivent une loi gaussienne multivariée

N(µp, σ
2Vp).

▶ Pour t > p, conditionnellement aux p observations précédentes :

Yt|Yt−1, . . . , Yt−p ∼ N(c+ ϕ1yt−1 + · · ·+ ϕpyt−p, σ
2)

▶ La log-vraisemblance exacte est :

L(θ) = −T

2
log(2π)− T

2
log(σ2) +

1

2
log |V−1

p |

− 1

2σ2
(yp − µp)

′V−1
p (yp − µp)

−
T∑

t=p+1

(yt − c− ϕ1yt−1 − · · · − ϕpyt−p)
2

2σ2
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Estimateurs conditionnels pour l’AR(p)
▶ La log-vraisemblance conditionnelle (sur les p premières observations) est :

Lc(θ) = −T − p

2
log(2π)− T − p

2
log(σ2)

−
T∑

t=p+1

(yt − c− ϕ1yt−1 − · · · − ϕpyt−p)
2

2σ2

▶ La maximisation revient à minimiser :
T∑

t=p+1

(yt − c− ϕ1yt−1 − · · · − ϕpyt−p)
2

▶ C’est la somme des carrés des résidus d’une régression MCO de yt sur une
constante et ses p valeurs retardées.
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Estimateur de la variance des innovations

▶ L’estimateur conditionnel de σ2 est le résidu quadratique moyen :

σ̂2 =
1

T − p

T∑
t=p+1

(yt − ĉ− ϕ̂1yt−1 − ϕ̂2yt−2 − · · · − ϕ̂pyt−p)
2

▶ Les estimateurs exact et conditionnel ont la même distribution asymptotique.

▶ Résultat important : Pour un processus AR(p), les estimateurs conditionnels du
maximum de vraisemblance sont identiques aux estimateurs des MCO.
L’estimation d’un AR(p) est donc particulièrement simple.
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Processus non gaussiens

▶ Que se passe-t-il si le processus n’est pas gaussien ?

▶ La régression MCO de yt sur une constante et ses p retards fournit une estimation
convergente de la projection linéaire :

Ê(Yt|Yt−1, Yt−2, . . . , Yt−p)

pourvu que le processus soit ergodique pour les moments d’ordre 2.

▶ Cette régression MCO maximise aussi la log-vraisemblance gaussienne
conditionnelle. Même si le processus n’est pas gaussien, maximiser cette fonction
fournit des estimateurs convergents.
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Estimateur de quasi-maximum de vraisemblance

▶ Un estimateur obtenu en maximisant une vraisemblance mal spécifiée (par
exemple, gaussienne alors que les données ne le sont pas) est appelé estimateur de
quasi-maximum de vraisemblance (QMLE).

▶ Propriété : Le QMLE fournit des estimateurs convergents des paramètres
(ϕ1, . . . , ϕp).

▶ Cependant, les erreurs standard calculées sous l’hypothèse gaussienne peuvent ne
pas être correctes. Il faut utiliser un estimateur robuste de la matrice de
variance-covariance.

▶ En pratique, si les données sont non gaussiennes, une transformation préalable (par
exemple, le logarithme) peut rapprocher la distribution de la normalité.
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Transformations Box-Cox
▶ Pour une variable positive Yt, Box et Cox (1964) proposent la famille de

transformations :

Y
(λ)
t =


Y λ
t − 1

λ
si λ ̸= 0

log Yt si λ = 0

▶ On choisit λ de sorte que Y
(λ)
t soit bien approximé par un processus ARMA

gaussien.

▶ En pratique, pour les séries économiques qui croissent dans le temps (PIB, prix),
on utilise souvent :

yt = logXt − logXt−1

c’est-à-dire le taux de croissance en log.
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Le modèle MA(1) gaussien

▶ On considère le processus MA(1) gaussien :

Yt = µ+ εt + θεt−1

avec εt ∼ i.i.d. N(0, σ2).

▶ Le vecteur de paramètres est θ = (µ, θ, σ2)′.

▶ Contrairement à l’AR, la vraisemblance du MA ne se réduit pas à un problème de
moindres carrés.

▶ Deux approches : la vraisemblance conditionnelle (plus simple) et la
vraisemblance exacte (plus précise en petit échantillon).
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Vraisemblance conditionnelle du MA(1) (1/2)
▶ On conditionne sur la valeur initiale ε0 = 0. Sachant εt−1, la densité de Yt est :

fYt|εt−1
(yt|εt−1;θ) =

1√
2πσ2

exp

[
−(yt − µ− θεt−1)

2

2σ2

]

▶ Sachant ε0 = 0, on déduit ε1 de l’observation y1 :

ε1 = y1 − µ

▶ Plus généralement, les innovations sont calculées récursivement :

εt = yt − µ− θεt−1

pour t = 1, 2, . . . , T , en partant de ε0 = 0.
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Vraisemblance conditionnelle du MA(1) (2/2)

▶ La log-vraisemblance conditionnelle est :

Lc(θ) = −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

où εt = yt − µ− θεt−1 avec ε0 = 0.

▶ La log-vraisemblance est une fonction non linéaire de µ et θ : pas de solution
analytique explicite.

▶ La maximisation requiert une optimisation numérique.

▶ Condition d’inversibilité : L’approximation conditionnelle est valide si |θ| < 1. Si
l’optimisation conduit à |θ̂| > 1, il faut recommencer avec θ̂−1.
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Effet de la condition initiale

▶ En développant la récurrence εt = yt − µ− θεt−1 :

εt = (yt − µ)− θ(yt−1 − µ) + θ2(yt−2 − µ)− · · ·
+ (−1)t−1θt−1(y1 − µ) + (−1)tθtε0

▶ Si |θ| < 1, l’effet de ε0 = 0 décroît géométriquement : (−1)tθtε0 → 0.

▶ Pour T suffisamment grand, l’approximation ε0 = 0 est inoffensive.

▶ Si |θ| est proche de 1, les premières innovations εt sont mal estimées, ce qui peut
affecter l’estimation en petit échantillon.
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Vraisemblance exacte du MA(1) (1/6)
▶ La vraisemblance exacte traite les T observations comme un vecteur gaussien

y = (y1, . . . , yT )
′ de loi N(µ,Ω).

▶ La matrice de variance-covariance Ω a une structure tridiagonale :

Ω = σ2


1 + θ2 θ 0 · · · 0

θ 1 + θ2 θ · · · 0
0 θ 1 + θ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 + θ2



▶ La log-vraisemblance exacte est :

L(θ) = −T

2
log(2π)− 1

2
log |Ω| − 1

2
(y − µ)′Ω−1(y − µ)
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Vraisemblance exacte du MA(1) (2/6)

▶ On cherche la factorisation triangulaire Ω = ADA′ où :
▶ A est triangulaire inférieure avec des 1 sur la diagonale,
▶ D est diagonale avec des éléments strictement positifs.

▶ Puisque Ω est tridiagonale, A est bidiagonale : seuls les éléments diagonaux et
sous-diagonaux sont non nuls.

▶ On note St = 1 + θ2 + θ4 + · · ·+ θ2(t−1) la somme géométrique. On a S1 = 1 et :

St =
1− θ2t

1− θ2
si θ2 ̸= 1
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Vraisemblance exacte du MA(1) (3/6)

▶ On obtient A et D par élimination de Gauss sur Ω/σ2.

▶ Étape 1 : Le pivot est d1 = (1 + θ2) = S2/S1. On élimine le terme sous-diagonal
θ en soustrayant θ

1+θ2
fois la première ligne. Cela donne a21 =

θ
1+θ2

= θS1
S2

.

▶ Étape 2 : Le nouveau pivot est :

d2 = (1 + θ2)− θ2

1 + θ2
=

(1 + θ2)2 − θ2

1 + θ2
=

1 + θ2 + θ4

1 + θ2
=

S3

S2

Le multiplicateur est a32 = θ
d2

= θS2
S3

.
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Vraisemblance exacte du MA(1) (4/6)
▶ En poursuivant, on montre par récurrence que pour t = 1, . . . , T :

dt =
St+1

St
et at+1,t =

θ St

St+1

▶ Explicitement, les matrices sont (en factorisant σ2 dans D) :

A =



1 0 0 · · · 0
θS1
S2

1 0 · · · 0

0 θS2
S3

1 · · · 0

...
...

...
. . .

...
0 0 0 · · · 1


, D = σ2


S2
S1

S3
S2

. . .
ST+1

ST


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Vraisemblance exacte du MA(1) (5/6)
▶ Le vecteur transformé ỹ = A−1(y − µ) a pour composantes :

ỹ1 = y1 − µ, ỹt = (yt − µ)− θ St−1

St
ỹt−1 pour t ≥ 2

▶ Puisque |A| = 1 (triangulaire avec des 1 sur la diagonale) et Ω = ADA′ :

|Ω| = |D| = σ2T
T∏
t=1

St+1

St
= σ2T ST+1

S1
= σ2T ST+1

car le produit est télescopique.

▶ De plus :

(y − µ)′Ω−1(y − µ) = ỹ′D−1ỹ =

T∑
t=1

ỹ2t
dt
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Vraisemblance exacte du MA(1) (6/6)

▶ La log-vraisemblance exacte s’écrit alors :

L(θ) = −T

2
log(2π)− 1

2

T∑
t=1

log(dt)−
1

2

T∑
t=1

ỹ2t
dt

avec dt = σ2St+1/St et St = 1 + θ2 + · · ·+ θ2(t−1).

▶ Cette expression est valide pour toute valeur de θ (pas seulement |θ| < 1).

▶ On montre que si θ = θ̂ maximise cette expression, alors θ̂−1 donne la même
valeur. On retient la solution inversible : |θ̂| < 1.

▶ Pour la vraisemblance conditionnelle, cette propriété n’est pas garantie.
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Le modèle MA(q) gaussien

▶ On considère le processus MA(q) gaussien :

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

avec εt ∼ i.i.d. N(0, σ2).

▶ Le vecteur de paramètres est θ = (µ, θ1, . . . , θq, σ
2)′.

▶ La matrice de variance-covariance Ω est une matrice bande de largeur q : les
autocovariances γk sont nulles pour k > q.
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Vraisemblance conditionnelle du MA(q)
▶ On pose ε0 = ε−1 = · · · = ε−q+1 = 0.

▶ Les innovations sont calculées par récurrence :

εt = yt − µ− θ1εt−1 − θ2εt−2 − · · · − θqεt−q

pour t = 1, 2, . . . , T .

▶ La log-vraisemblance conditionnelle est :

Lc(θ) = −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

▶ Cette approximation est valide si toutes les racines de 1 + θ1z + · · ·+ θqz
q = 0

sont de module > 1 (inversibilité).
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Vraisemblance exacte du MA(q)
▶ La structure bande de Ω permet d’utiliser la factorisation triangulaire Ω = ADA′.

▶ A est une matrice triangulaire inférieure bande : aij = 0 pour i > q + j.

▶ Les éléments de ỹ = A−1(y − µ) se calculent récursivement par résolution d’un
système triangulaire.

▶ La log-vraisemblance exacte est :

L(θ) = −T

2
log(2π)− 1

2

T∑
t=1

log(dtt)−
1

2

T∑
t=1

ỹ2t
dtt

▶ Contrairement à la vraisemblance conditionnelle, l’expression exacte est valide pour
toute valeur de (θ1, . . . , θq).
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Le modèle ARMA(p, q) gaussien

▶ Le modèle ARMA(p, q) gaussien s’écrit :

Yt = c+ ϕ1Yt−1 + · · ·+ ϕpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q

avec εt ∼ i.i.d. N(0, σ2).

▶ Le vecteur de paramètres est θ = (c, ϕ1, . . . , ϕp, θ1, . . . , θq, σ
2)′.

▶ Le nombre de paramètres est p+ q + 2.
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Vraisemblance conditionnelle du ARMA(p, q)

▶ On fixe les conditions initiales :
▶ y0 = (y0, y−1, . . . , y−p+1)

′ aux valeurs observées ou à l’espérance,
▶ ε0 = (ε0, ε−1, . . . , ε−q+1)

′ = 0.

▶ Les innovations sont calculées récursivement :

εt = yt − c− ϕ1yt−1 − · · · − ϕpyt−p − θ1εt−1 − · · · − θqεt−q

pour t = 1, 2, . . . , T .

▶ La log-vraisemblance conditionnelle est :

Lc(θ) = −T

2
log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2
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Conditions initiales alternatives
▶ Approche Box-Jenkins : On fixe ys = c/(1− ϕ1 − · · · − ϕp) pour s ≤ 0 et

εs = 0 pour s ≤ 0.

▶ Approche alternative : On fixe les ε à zéro et les y à leurs valeurs observées. On
commence l’itération à t = p+ 1 :

εp = εp−1 = · · · = εp−q+1 = 0

La log-vraisemblance conditionnelle est alors :

Lc(θ) = −T − p

2
log(2π)− T − p

2
log(σ2)−

T∑
t=p+1

ε2t
2σ2

▶ Ces approximations sont valides si toutes les racines de ϕ(z) = 0 et θ(z) = 0 sont
de module > 1.
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Vraisemblance exacte

▶ L’approche la plus rigoureuse utilise le filtre de Kalman pour calculer la
vraisemblance exacte.

▶ Le filtre de Kalman fournit, de manière récursive, les prévisions optimales et les
erreurs de prévision, ce qui permet de construire la vraisemblance par
décomposition en erreurs de prévision.

▶ Alternativement, on peut utiliser la factorisation triangulaire de la matrice de
variance-covariance Ω, comme dans le cas MA.

▶ Les deux approches donnent le même résultat mais diffèrent en termes
d’implémentation informatique.
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Le problème d’optimisation

▶ La log-vraisemblance est une fonction non linéaire de θ. Il faut trouver :

θ̂ = argmax
θ

L(θ)

▶ Exception : pour un processus AR pur, les estimateurs ont une solution analytique
(MCO).

▶ Dans le cas général (MA ou ARMA), il faut recourir à des méthodes
d’optimisation numérique.

▶ Idée : calculer numériquement L(θ) pour différentes valeurs de θ et chercher la
valeur qui maximise cette fonction.
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Recherche sur grille (grid search)

▶ La méthode la plus simple : évaluer L(θ) sur une grille de valeurs de θ.

▶ Exemple : Pour un AR(1) avec c = 0 et σ2 = 1, on évalue L(ϕ) pour
ϕ ∈ {−0.9,−0.8, . . . , 0.8, 0.9}.

▶ On raffine la grille autour du maximum.

▶ Avantage : Simple et permet de visualiser la surface de vraisemblance.

▶ Inconvénient : Devient impraticable quand le nombre de paramètres augmente
(malédiction de la dimension).
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Gradient et méthode de plus forte pente

▶ On définit le gradient de la log-vraisemblance :

g(θ) =
∂L(θ)
∂θ

C’est un vecteur qui pointe dans la direction d’augmentation la plus rapide de L.

▶ Méthode de plus forte pente (steepest ascent) :

θ(n+1) = θ(n) + αng(θ
(n))

où αn > 0 est le pas de l’algorithme.

▶ On itère jusqu’à convergence : ∥θ(n+1) − θ(n)∥ < ϵ ou ∥g(θ(n))∥ < ϵ.
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Calcul du gradient
▶ Le gradient peut être calculé de deux manières.

▶ Analytiquement : On différencie L(θ) par rapport à chaque élément de θ. C’est
possible pour les modèles AR et MA, mais les expressions deviennent complexes
pour les modèles ARMA.

▶ Numériquement : On approxime les dérivées partielles par différences finies :

∂L
∂θi

≈ L(θ + hei)− L(θ − hei)

2h

où ei est le i-ème vecteur de la base canonique et h est un petit incrément.

▶ Le gradient numérique est facile à programmer mais introduit une erreur
d’approximation.
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Maxima locaux et globaux

▶ Si la log-vraisemblance est unimodale, les méthodes itératives convergent vers le
maximum global, quel que soit le point de départ.

▶ En général, L(θ) peut avoir plusieurs maxima locaux. L’algorithme converge alors
vers le maximum local le plus proche du point de départ.

▶ Stratégies pratiques :
▶ Essayer plusieurs points de départ différents

▶ Utiliser d’abord une recherche sur grille grossière, puis affiner avec une méthode de
gradient

▶ Comparer les valeurs de L(θ̂) obtenues à partir de différents points de départ
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La fonction de score
▶ On appelle fonction de score le gradient de la log-vraisemblance :

s(θ) =
∂L(θ)
∂θ

C’est un vecteur de dimension (p+ q + 2)× 1.

▶ Sous des conditions de régularité (échange dérivée/intégrale), le score a une
espérance nulle évaluée en la vraie valeur :

Eθ0 [s(θ0)] = 0

▶ Intuition : à la vraie valeur des paramètres, la log-vraisemblance est en moyenne à
son maximum.
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Matrice d’information de Fisher

▶ La matrice d’information de Fisher est définie par :

I(θ) = Vθ[s(θ)] = Eθ

[
s(θ)s(θ)′

]

▶ Sous les conditions de régularité, on a l’égalité de l’information :

I(θ) = −Eθ

[
∂2L(θ)
∂θ ∂θ′

]
= −Eθ[H(θ)]

où H(θ) est la matrice hessienne de la log-vraisemblance.

▶ La matrice d’information mesure la quantité d’information que l’échantillon
contient sur les paramètres.
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Borne de Cramér-Rao

▶ Borne de Cramér-Rao : Pour tout estimateur sans biais θ̂ de θ :

V(θ̂) ≥ I(θ)−1

au sens des matrices (la différence est semi-définie positive).

▶ L’estimateur du maximum de vraisemblance atteint cette borne
asymptotiquement : c’est l’estimateur le plus précis (asymptotiquement) parmi les
estimateurs réguliers.

▶ Plus la courbure de la log-vraisemblance est forte autour de θ0 (information de
Fisher élevée), plus l’estimation est précise.
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Distribution asymptotique de l’EMV
▶ Sous des conditions de régularité (stationnarité, ergodicité, identifiabilité, θ0

intérieur à l’espace des paramètres), l’EMV vérifie :

▶ Convergence :
θ̂

p−→ θ0 quand T → ∞

▶ Normalité asymptotique :
√
T
(
θ̂ − θ0

)
d−→ N

(
0, I(θ0)−1

)

▶ En d’autres termes, pour T grand :

θ̂
a∼ N

(
θ0,

1

T
I(θ0)−1

)
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Erreurs standard et intervalles de confiance
▶ En pratique, on estime la matrice de variance-covariance en remplaçant la matrice

d’information par la hessienne observée :

V̂(θ̂) =
[
−H(θ̂)

]−1
=

[
− ∂2L
∂θ ∂θ′

∣∣∣∣
θ=θ̂

]−1

▶ L’erreur standard du i-ème paramètre est :

se(θ̂i) =
√[

V̂(θ̂)
]
ii

▶ Un intervalle de confiance à 95% pour θi est :

θ̂i ± 1,96× se(θ̂i)
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Estimateur OPG
▶ Une alternative à la hessienne est l’estimateur OPG (outer product of gradients).

On décompose la log-vraisemblance en contributions individuelles :

L(θ) =
T∑
t=1

ℓt(θ)

▶ La matrice d’information est estimée par :

ÎOPG =

T∑
t=1

∂ℓt(θ̂)

∂θ

∂ℓt(θ̂)

∂θ′

▶ Cet estimateur est facile à calculer (pas besoin de dérivées secondes), mais peut
être moins précis en petit échantillon.
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Cas du quasi-maximum de vraisemblance

▶ Si le modèle est mal spécifié (par exemple, on maximise une vraisemblance
gaussienne alors que les erreurs ne sont pas gaussiennes), l’égalité de l’information
ne tient plus :

A = −E[H(θ0)] ̸= B = E
[
s(θ0)s(θ0)

′]

▶ La distribution asymptotique du QMLE est alors :

√
T
(
θ̂ − θ0

)
d−→ N

(
0, A−1BA−1

)

▶ La matrice A−1BA−1 est appelée matrice sandwich (ou estimateur de
White/Huber). Il faut l’utiliser pour obtenir des erreurs standard robustes.
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Estimation de la matrice sandwich
▶ En pratique, on estime :

Â = − 1

T
H(θ̂) = − 1

T

∂2L
∂θ ∂θ′

∣∣∣∣
θ̂

▶ Et :

B̂ =
1

T

T∑
t=1

∂ℓt(θ̂)

∂θ

∂ℓt(θ̂)

∂θ′

▶ L’estimateur robuste de la variance est alors :

V̂rob(θ̂) =
1

T
Â−1B̂ Â−1

▶ Si le modèle est correctement spécifié, Â ≈ B̂ et on retrouve l’estimateur
classique. cz e18cd8d – 65/80 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Test de Wald
▶ On souhaite tester l’hypothèse linéaire H0 : Rθ = r où R est une matrice (r × k)

de rang r et k = p+ q + 2.

▶ La statistique de Wald est :

W = (Rθ̂ − r)′
[
R V̂(θ̂)R′

]−1
(Rθ̂ − r)

▶ Sous H0 et asymptotiquement :

W
d−→ χ2(r)

▶ Avantage : Ne nécessite que l’estimation du modèle non contraint.
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Test de Wald : cas scalaire
▶ Pour tester H0 : θi = θ0i (un seul paramètre), la statistique de Wald se simplifie en

la t-statistique au carré :

W =

(
θ̂i − θ0i
se(θ̂i)

)2
d−→ χ2(1)

▶ De manière équivalente, la t-statistique :

t =
θ̂i − θ0i
se(θ̂i)

d−→ N(0, 1)

▶ Exemple : Pour tester si un coefficient AR ou MA est significativement différent
de zéro, on calcule t = θ̂i/se(θ̂i) et on rejette H0 si |t| > 1,96 au seuil de 5%.
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Test du rapport de vraisemblance
▶ On estime le modèle sous H0 (contraint, θ̃) et sous H1 (non contraint, θ̂).

▶ La statistique du rapport de vraisemblance (likelihood ratio) est :

LR = 2
[
L(θ̂)− L(θ̃)

]

▶ Sous H0 et asymptotiquement :

LR
d−→ χ2(r)

▶ Avantage : Ne nécessite pas le calcul de la matrice de variance-covariance.

▶ Inconvénient : Requiert l’estimation des deux modèles (contraint et non
contraint).
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Test du rapport de vraisemblance : exemple

▶ Test d’un AR(1) contre un AR(2) :
▶ Modèle non contraint : Yt = c+ ϕ1Yt−1 + ϕ2Yt−2 + εt
▶ Modèle contraint (H0 : ϕ2 = 0) : Yt = c+ ϕ1Yt−1 + εt

▶ On calcule :
LR = 2

[
LAR(2)(θ̂)− LAR(1)(θ̃)

]

▶ On rejette H0 si LR > χ2
1,0,95 = 3,84 (seuil à 5%, 1 degré de liberté).

▶ Ce test est directement applicable à la sélection de l’ordre d’un modèle ARMA.
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Test du multiplicateur de Lagrange
▶ Le test du multiplicateur de Lagrange (ou test du score) utilise uniquement

l’estimation sous H0 :
LM = s(θ̃)′ I(θ̃)−1 s(θ̃)

où s(θ̃) est le score évalué à l’estimateur contraint.

▶ Sous H0 et asymptotiquement :

LM
d−→ χ2(r)

▶ Intuition : Si H0 est vraie, le score s(θ̃) doit être proche de zéro. Un score élevé
(en norme) fournit une preuve contre H0.

▶ Avantage : Ne nécessite que l’estimation du modèle contraint (le plus simple).
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Comparaison des trois tests

▶ Les trois tests (Wald, LR, LM) sont asymptotiquement équivalents sous H0 : ils
ont la même distribution limite χ2(r).

▶ En échantillon fini, ils peuvent donner des résultats différents. On montre que :

W ≥ LR ≥ LM

Le test de Wald rejette le plus souvent, le test LM le moins.

▶ Choix pratique :
▶ Test de Wald : facile si le modèle non contraint est déjà estimé,
▶ Test LR : le plus couramment utilisé pour comparer des modèles emboîtés,
▶ Test LM : utile quand le modèle contraint est beaucoup plus simple.
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Critères d’information
▶ Pour comparer des modèles non emboîtés, on utilise des critères d’information

qui pénalisent la complexité.

▶ Critère d’Akaike (AIC, 1973) :

AIC = −2L(θ̂) + 2k

où k est le nombre de paramètres estimés.

▶ Critère bayésien de Schwarz (BIC, 1978) :

BIC = −2L(θ̂) + k log T

▶ On sélectionne le modèle qui minimise le critère. Le BIC pénalise davantage la
complexité (log T > 2 dès que T ≥ 8) et sélectionne des modèles plus
parcimonieux.
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Critères d’information : propriétés

▶ AIC : Minimise asymptotiquement l’erreur quadratique moyenne de prévision.
Tend à sélectionner des modèles légèrement sur-paramétrés.

▶ BIC : Sélectionne le vrai modèle avec probabilité tendant vers 1 quand T → ∞
(consistant). Tend à sélectionner des modèles sous-paramétrés en petit
échantillon.

▶ En pratique :
▶ Si l’objectif est la prévision, l’AIC est souvent préféré.
▶ Si l’objectif est l’identification du vrai modèle, le BIC est plus adapté.
▶ On estime plusieurs modèles ARMA(p, q) pour p, q ∈ {0, 1, . . . , pmax} et on retient

celui qui minimise le critère choisi.
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Approche de Box-Jenkins

▶ Box et Jenkins (1976) proposent une procédure en quatre étapes :

▶ (1) Transformation : Transformer les données pour obtenir une série
approximativement stationnaire (différenciation, logarithme).

▶ (2) Identification : Choisir les ordres p et q à l’aide des autocorrélations et
autocorrélations partielles empiriques.

▶ (3) Estimation : Estimer les paramètres ϕ(L) et θ(L) par maximum de
vraisemblance.

▶ (4) Diagnostic : Vérifier que le modèle estimé est compatible avec les données
observées.

cz e18cd8d – 75/80 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Autocorrélations empiriques
▶ L’autocorrélation empirique d’ordre j est :

ρ̂j =
γ̂j
γ̂0

où

γ̂j =
1

T

T∑
t=j+1

(yt − ȳ)(yt−j − ȳ), ȳ =
1

T

T∑
t=1

yt

▶ Si les données proviennent d’un processus MA(q), alors ρj = 0 pour j > q. On
s’attend donc à ce que ρ̂j ≈ 0 pour j > q.

▶ Sous l’hypothèse de bruit blanc, ρ̂j est approximativement distribué selon
N(0, 1/T ). L’intervalle de confiance à 95% est ±2/

√
T .
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Autocorrélations partielles empiriques

▶ L’autocorrélation partielle empirique d’ordre m est le dernier coefficient α̂(m)
m

dans la régression :

yt+1 = ĉ+ α̂
(m)
1 yt + α̂

(m)
2 yt−1 + · · ·+ α̂(m)

m yt−m+1 + êt

▶ Si les données proviennent d’un processus AR(p), alors l’autocorrélation partielle
est nulle pour m > p :

α(m)
m = 0 pour m > p

▶ Sous cette hypothèse, V(α̂(m)
m ) ≈ 1/T et l’intervalle de confiance à 95% est

±2/
√
T .
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Règles d’identification

▶ Processus MA(q) : Les autocorrélations ρ̂j sont significativement non nulles pour
j ≤ q, puis deviennent nulles au-delà. Les autocorrélations partielles décroissent
progressivement.

▶ Processus AR(p) : Les autocorrélations partielles α̂
(m)
m sont significativement non

nulles pour m ≤ p, puis deviennent nulles au-delà. Les autocorrélations décroissent
progressivement (mélange d’exponentielles ou de sinusoïdes amorties).

▶ Processus ARMA(p, q) : Les deux fonctions décroissent progressivement.
L’identification est plus difficile et demande souvent d’essayer plusieurs
spécifications.
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Philosophie de la parcimonie

▶ Box et Jenkins insistent sur le principe de parcimonie : utiliser le moins de
paramètres possible.

▶ Un modèle avec trop de paramètres :
▶ s’ajuste bien aux données historiques (sur-ajustement),
▶ mais prévoit mal hors échantillon.

▶ La découverte que des modèles ARMA avec de petites valeurs de p et q produisent
souvent de meilleures prévisions que les grands modèles macroéconométriques a
été un résultat marquant.

▶ En pratique, des valeurs de p et q inférieures ou égales à 2 ou 3 suffisent pour la
plupart des applications.
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Résumé

▶ Le maximum de vraisemblance est le principe d’estimation dominant.
▶ Pour les processus AR purs, l’estimation se réduit aux MCO.
▶ Pour les processus MA et ARMA, la vraisemblance est non linéaire et nécessite

une optimisation numérique.
▶ La vraisemblance conditionnelle simplifie les calculs mais nécessite l’inversibilité.

La vraisemblance exacte est plus robuste.
▶ L’EMV est asymptotiquement normal avec une variance atteignant la borne de

Cramér-Rao.
▶ Les tests de Wald, du rapport de vraisemblance et du multiplicateur de

Lagrange permettent de tester des hypothèses sur les paramètres.
▶ Les critères AIC et BIC complètent l’identification par les autocorrélations pour la

sélection de modèles.
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