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Les modèles ARMA

▶ Dans ce chapitre, nous allons considérer une large classe de modèles linéaires qui
permettent de construire des processus stochastiques à partir d’un bruit blanc
(εt, t ∈ Z) ∼ BB(0, σ2).

▶ ARMA = AR + MA :
▶ AR : Auto-Régressif (Auto-Regressive)
▶ MA : Moyenne Mobile (Moving Average)

▶ Ces modèles permettent de capturer différentes structures de dépendance
temporelle de manières plus ou moins parcimonieuses.
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Le modèle MA(1)

▶ Définition : Soit (εt, t ∈ Z) un bruit blanc de variance σ2 et d’espérance nulle. On
définit le processus MA(1) (Yt, t ∈ Z) par :

Yt = εt − θεt−1

où θ est une constante réelle.

▶ Le processus Yt est une combinaison linéaire des innovations ε à différentes dates.

▶ Caractérisons ce processus en calculant ses moments d’ordre 1 et 2.
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Espérance du MA(1)

▶ Calcul de l’espérance :

E[Yt] = E[εt − θεt−1]

= E[εt]− θE[εt−1] (linéarité de l’espérance)
= 0− θ · 0
= 0

▶ L’espérance du processus MA(1) est nulle pour tout t.

cz e18cd8d – 7/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Variance du MA(1)

▶ Calcul de la variance :

V[Yt] = E[Y 2
t ] (car E[Yt] = 0)

= E[(εt − θεt−1)
2]

= E[ε2t − 2θεtεt−1 + θ2ε2t−1]

= E[ε2t ]− 2θ E[εtεt−1]︸ ︷︷ ︸
=0 (bruit blanc)

+θ2E[ε2t−1]

= σ2 + θ2σ2

= (1 + θ2)σ2

▶ La variance est constante et ne dépend pas de t.
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Fonction d’autocovariance du MA(1) (1/2)

▶ Calcul de γ(1) :

γ(1) = E[YtYt−1]

= E[(εt − θεt−1)(εt−1 − θεt−2)]

= E[εtεt−1]− θE[εtεt−2]− θE[ε2t−1] + θ2E[εt−1εt−2]

▶ Les termes E[εtεt−1], E[εtεt−2] et E[εt−1εt−2] sont nuls (bruit blanc).

▶ Donc :
γ(1) = −θE[ε2t−1] = −θσ2
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Fonction d’autocovariance du MA(1) (2/2)

▶ Calcul de γ(h) pour |h| ≥ 2 : Pour |h| ≥ 2, les produits Yt et Yt−h n’ont aucune
innovation ε en commun :

γ(h) = E[(εt − θεt−1)(εt−h − θεt−h−1)] = 0

▶ Résumé :

γ(h) =


(1 + θ2)σ2 si h = 0

−θσ2 si |h| = 1

0 si |h| ≥ 2

▶ La fonction d’autocovariance est nulle au-delà du rang 1.
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Fonction d’autocorrélation du MA(1)

▶ La fonction d’autocorrélation est :

ρ(h) =
γ(h)

γ(0)
=


1 si h = 0

−θ
1 + θ2

si |h| = 1

0 si |h| ≥ 2

▶ Propriété importante : On peut vérifier que |ρ(1)| ≤ 1
2 pour tout θ ∈ R.

En effet, en étudiant la fonction f(θ) = −θ
1+θ2

, on montre que son maximum est 1
2

(atteint en θ = −1) et son minimum est −1
2 (atteint en θ = 1).
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Démonstration : |ρ(1)| ≤ 1
2

Soit f(θ) =
−θ

1 + θ2
. Calculons les extrema.

f ′(θ) =
−(1 + θ2) + θ · 2θ

(1 + θ2)2
=

θ2 − 1

(1 + θ2)2

▶ f ′(θ) = 0 ⇔ θ = ±1

▶ f(−1) =
1

2
(maximum)

▶ f(1) = −1

2
(minimum)

▶ limθ→±∞ f(θ) = 0

Donc −1

2
≤ ρ(1) ≤ 1

2
pour tout θ ∈ R.

−4 −2 2 4

−0.5

0.5
θ = −1

θ = 1

θ

ρ(1)
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Processus MA(1) non centré
▶ Définition : On peut ajouter une constante dans la définition :

Yt = µ+ εt − θεt−1

▶ Cela n’affecte que l’espérance, pas les moments d’ordre 2 puisque nous ne faisons
que rajouter une constante (déterministe):

▶ E[Yt] = µ

▶ V[Yt] = (1 + θ2)σ2 (inchangée)

▶ γ(h) inchangée pour h ̸= 0

▶ Stationnarité : Le processus MA(1) est toujours stationnaire, quelle que soit la
valeur de θ.
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Problème d’identification du MA(1)

▶ Observation : Si θ = a, alors ρ(1) =
−a

1 + a2
.

Si θ =
1

a
, alors ρ(1) =

−1/a

1 + 1/a2
=

−1/a

(a2 + 1)/a2
=

−a
1 + a2

.

▶ Autrement dit, pour θ = a et θ = 1/a, le processus a les mêmes propriétés en
termes de dépendance !

▶ ⇒ Cela pose un problème d’identification : on ne peut pas distinguer ces deux
modèles à partir des données.

▶ Convention d’inversibilité : Pour résoudre ce problème d’équivalence
observationnelle, on impose |θ| < 1.
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Structure de dépendance du MA(1)

▶ Remarque : La structure de dépendance du MA(1) est très limitée :
▶ Yt est corrélé avec Yt−1 (covariance non nulle)
▶ Yt n’est pas corrélé avec Yt−h pour |h| ≥ 2

▶ L’autocorrélation non nulle à l’ordre 1 apparaît car deux Y consécutifs ont une
innovation ε en commun. Les couples de variables Y plus éloignées dans le temps
ne partagent aucun ε.
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Densité spectrale du MA(1)

▶ Rappel : Pour un processus stationnaire, la densité spectrale est la transformée de
Fourier de la fonction d’autocovariance :

f(ω) =
1

2π

+∞∑
h=−∞

γ(h)e−iωh

▶ Puisque γ(h) = 0 pour |h| ≥ 2, on a :

f(ω) =
1

2π

[
γ(−1)eiω + γ(0) + γ(1)e−iω

]
=
σ2

2π

[
−θeiω + (1 + θ2)− θe−iω

]
=
σ2

2π

[
1 + θ2 − 2θ cos(ω)

]
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Densité spectrale du MA(1) : représentation graphique

0 π
2

π0
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4

ω

f
(ω

)
·2
π
/σ

2

θ = 0.9 θ = 0.5 θ = −0.5 θ = −0.9 θ = 0

θ > 0 : énergie concentrée aux hautes fréquences (ω ≈ π). θ < 0 : énergie concentrée aux
basses fréquences (ω ≈ 0).
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Le modèle MA(2)

▶ Définition : Soit (εt, t ∈ Z) un bruit blanc de variance σ2. On définit le processus
MA(2) (Yt, t ∈ Z) par :

Yt = εt − θ1εt−1 − θ2εt−2

▶ On enrichit la structure d’autocorrélation en rajoutant des retards sur les
innovations ε.

▶ Remarque : On pourrait ajouter une constante µ ; cela n’affecterait que
l’espérance, comme dans le cas du MA(1).
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Espérance et variance du MA(2)

▶ Espérance :
E[Yt] = E[εt − θ1εt−1 − θ2εt−2] = 0

▶ Variance :

V[Yt] = E[(εt − θ1εt−1 − θ2εt−2)
2]

= E[ε2t + θ21ε
2
t−1 + θ22ε

2
t−2 − 2θ1εtεt−1 − 2θ2εtεt−2 + 2θ1θ2εt−1εt−2]

▶ Les termes croisés sont nuls (bruit blanc), donc :

V[Yt] = E[ε2t ] + θ21E[ε2t−1] + θ22E[ε2t−2] = (1 + θ21 + θ22)σ
2
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Autocovariance d’ordre 1 du MA(2)

▶ Calcul de γ(1) :

γ(1) = E[YtYt−1]

= E[(εt − θ1εt−1 − θ2εt−2)(εt−1 − θ1εt−2 − θ2εt−3)]

▶ Seuls les produits d’innovations de même date sont non nuls :

▶ −θ1εt−1 · εt−1 = −θ1ε2t−1

▶ −θ2εt−2 · (−θ1εt−2) = θ1θ2ε
2
t−2

▶ Donc :
γ(1) = −θ1E[ε2t−1] + θ1θ2E[ε2t−2] = (−θ1 + θ1θ2)σ

2

cz e18cd8d – 20/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Autocovariance d’ordre 2 du MA(2)

▶ Calcul de γ(2) :

γ(2) = E[YtYt−2]

= E[(εt − θ1εt−1 − θ2εt−2)(εt−2 − θ1εt−3 − θ2εt−4)]

▶ Seul le produit −θ2εt−2 · εt−2 est non nul :

γ(2) = −θ2E[ε2t−2] = −θ2σ2

▶ Pour |h| ≥ 3 : Il n’y a plus d’innovations communes entre Yt et Yt−h, donc :

γ(h) = 0 pour |h| ≥ 3
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Résumé pour le MA(2)

▶ Fonction d’autocovariance :

γ(h) =


(1 + θ21 + θ22)σ

2 si h = 0

(−θ1 + θ1θ2)σ
2 si |h| = 1

−θ2σ2 si |h| = 2

0 si |h| ≥ 3

▶ Fonction d’autocorrélation :

ρ(1) =
−θ1 + θ1θ2
1 + θ21 + θ22

, ρ(2) =
−θ2

1 + θ21 + θ22
, ρ(h) = 0 si |h| ≥ 3

▶ ⇒ La fonction d’autocovariance d’un MA(2) est nulle au-delà du rang 2.

▶ ⇒ Le processus est stationnaire pour toute valeur de (θ1, θ2).
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Autocorrélations du MA(2) : représentation graphique

Autocorrélation d’ordre 1
ρ(1) =

−θ1 + θ1θ2
1 + θ21 + θ22

−2 −1 0 1 2
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θ 2
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)

Autocorrélation d’ordre 2
ρ(2) =

−θ2
1 + θ21 + θ22

−2 −1 0 1 2
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0

1
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θ 2
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0
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Triangle d’inversibilité : θ2 > −1, θ1 + θ2 < 1, θ2 − θ1 < 1.
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Densité spectrale du MA(2)

▶ Calcul : Pour le MA(2), Yt = εt − θ1εt−1 − θ2εt−2, on a :

f(ω) =
σ2

2π

∣∣1− θ1e
−iω − θ2e

−2iω
∣∣2

▶ En développant le module au carré :∣∣1− θ1e
−iω − θ2e

−2iω
∣∣2 = 1 + θ21 + θ22 − 2θ1 cos(ω) + 2θ1θ2 cos(ω)− 2θ2 cos(2ω)

= 1 + θ21 + θ22 + 2θ1(θ2 − 1) cos(ω)− 2θ2 cos(2ω)

▶ Densité spectrale du MA(2) :

f(ω) =
σ2

2π

[
1 + θ21 + θ22 + 2θ1(θ2 − 1) cos(ω)− 2θ2 cos(2ω)

]
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Densité spectrale du MA(2) : représentation graphique
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θ1 = 0.5; θ2 = 0.3 θ1 = −0.5; θ2 = 0.3 θ1 = 0.8; θ2 = −0.5

θ1 = −0.8; θ2 = −0.5 θ1 = θ2 = 0

Le paramètre θ2 contrôle la composante en cos(2ω), introduisant des oscillations plus rapides
dans le spectre.
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Le modèle MA(q)

▶ Définition : Soit (εt, t ∈ Z) un bruit blanc de variance σ2. On définit le processus
MA(q) (Yt, t ∈ Z) par :

Yt = εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

▶ Remarque sur la paramétrisation : On a changé le signe des coefficients par
rapport au MA(1) et MA(2). Ce choix de paramétrisation affecte l’expression de la
fonction d’autocovariance mais pas les propriétés fondamentales du modèle.

▶ On pourrait ajouter une constante µ ou un autre terme déterministe ; cela
n’affecterait que l’espérance.
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Moments du MA(q)

▶ Espérance :
E[Yt] = 0

▶ Variance :

V[Yt] = E
[
(εt + θ1εt−1 + · · ·+ θqεt−q)

2
]

= E[ε2t ] + θ21E[ε2t−1] + · · ·+ θ2qE[ε2t−q]

▶ Les termes croisés θiθjεt−iεt−j pour i ̸= j sont nuls en espérance.

▶
V[Yt] = (1 + θ21 + θ22 + · · ·+ θ2q)σ

2
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Fonction d’autocovariance du MA(q) (1/2)

▶ Calcul de γ(h) :

γ(h) = E[YtYt−h]

= E

( q∑
i=0

θiεt−i

) q∑
j=0

θjεt−h−j


avec la convention θ0 = 1.

▶ En développant :

γ(h) =

q∑
i=0

q∑
j=0

θiθjE[εt−iεt−h−j ]

▶ Le terme E[εt−iεt−h−j ] est nul sauf si t− i = t− h− j, c’est-à-dire si j = i− h.
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Fonction d’autocovariance du MA(q) (2/2)
▶ En posant j = i− h et en éliminant les termes nuls :

γ(h) = σ2
q∑

i=h

θiθi−h

avec la convention θ0 = 1 et θi = 0 pour i < 0 ou i > q.

▶ Propriété fondamentale :

γ(h) = 0 pour |h| > q

La fonction d’autocovariance d’un MA(q) est nulle au-delà du rang q.

▶ ⇒ Le processus MA(q) est toujours stationnaire pour toute valeur des
paramètres (θ1, . . . , θq).
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Limitation du modèle MA

▶ Pour obtenir une persistance « longue » au sens où Yt et Yt−h sont corrélés pour
de grandes valeurs de h, il faut rajouter de nombreux retards dans le modèle MA.

▶ À l’extrême, si on souhaite que Yt soit corrélé avec tout son passé, il faut avoir un
nombre infini de retards sur l’innovation !

▶ Conclusion : Le modèle MA n’est pas très parcimonieux pour modéliser des
processus avec une persistance longue.
⇒ On va introduire le modèle autorégressif (AR) qui permet de capturer une
persistance longue avec peu de paramètres.
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Le modèle MA(∞)

▶ Définition : Soit (εt, t ∈ Z) un bruit blanc de variance σ2. On définit le processus
MA(∞) (Yt, t ∈ Z) par :

Yt = µ+

∞∑
i=0

θiεt−i

avec θ0 = 1 et (θi)i≥0 une suite absolument sommable :

∞∑
i=0

|θi| <∞

▶ L’espérance de ce processus est E[Yt] = µ.
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Variance du MA(∞)
▶ Calcul de la variance :

V[Yt] = E

( ∞∑
i=0

θiεt−i

)2
 = E

[ ∞∑
i=0

θ2i ε
2
t−i

]

=

∞∑
i=0

θ2iE[ε2t−i] = σ2
∞∑
i=0

θ2i

▶ La variance est finie car si les θi sont absolument sommables, alors la somme des
carrés est aussi finie :

∞∑
i=0

|θi| <∞ ⇒
∞∑
i=0

θ2i <∞

▶ En effet :
∑∞

i=0 θ
2
i ≤ (

∑∞
i=0 |θi|)

2 <∞.
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Fonction d’autocovariance du MA(∞)
▶ Calcul de γ(h) :

γ(h) = E

( ∞∑
i=0

θiεt−i

) ∞∑
j=0

θjεt−h−j


=

∞∑
i=0

∞∑
j=0

θiθjE[εt−iεt−h−j ]

▶ Le terme E[εt−iεt−h−j ] est non nul seulement si i = h+ j, donc :

γ(h) = σ2
∞∑
i=0

θiθi+h

▶ Propriété : La fonction d’autocovariance (et donc d’autocorrélation) est non
nulle pour tout h.
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Le modèle AR(1)

▶ Définition : Soit (εt, t ∈ Z) un bruit blanc de variance σ2. Le processus (Yt, t ∈ Z)
est autorégressif d’ordre 1 s’il est défini par la récurrence stochastique :

Yt = φYt−1 + εt

▶ On suppose que εt est indépendant du passé de Y : c’est une innovation.

▶ On suppose |φ| < 1 (condition de stationnarité).

▶ Calculons les moments d’ordre 1 et 2 de ce processus sous l’hypothèse de
stationnarité.
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Espérance du AR(1)

▶ Calcul de l’espérance :

E[Yt] = E[φYt−1 + εt]

= φE[Yt−1] + E[εt]
= φE[Yt−1]

▶ Sous l’hypothèse de stationnarité, E[Yt] = E[Yt−1] = µ pour tout t.

▶ Donc :
µ = φµ

▶ Pour φ ̸= 1, la seule solution est :

E[Yt] = 0
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Variance du AR(1)

▶ Calcul de la variance :
V[Yt] = V[φYt−1 + εt]

▶ Comme εt est indépendant du passé de Yt, on peut « casser » la variance :

V[Yt] = V[φYt−1] + V[εt] = φ2V[Yt−1] + σ2

▶ Sous l’hypothèse de stationnarité, V[Yt] = V[Yt−1] = γ(0) :

γ(0) = φ2γ(0) + σ2

▶ D’où :

γ(0) = V[Yt] =
σ2

1− φ2
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Remarques sur la variance du AR(1)

▶

V[Yt] =
σ2

1− φ2

▶ La volatilité de (Yt, t ∈ Z) est d’autant plus importante que :

▶ La variance de l’innovation σ2 est grande

▶ Le paramètre autorégressif φ est proche de 1 ou −1

▶ Attention :
▶ La variance n’est pas définie pour |φ| = 1
▶ Elle devient même négative pour |φ| > 1 (ce qui est absurde)

⇒ Cela justifie la condition |φ| < 1.
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Fonction d’autocovariance du AR(1) (1/2)

▶ Calcul de γ(h) : Partons de la définition :

YtYt−h = φYt−1Yt−h + εtYt−h

▶ En prenant l’espérance :

E[YtYt−h] = φE[Yt−1Yt−h] + E[εtYt−h]

▶ Pour h ≥ 1, on a E[εtYt−h] = 0 car εt est indépendant du passé de Y .

▶ Par définition de la fonction d’autocovariance obéit à la récurrence d’ordre 1
suivante :

γ(h) = φγ(h− 1)
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Fonction d’autocovariance du AR(1) (2/2)
▶ La fonction d’autocovariance vérifie la récurrence :

γ(h) = φγ(h− 1)

▶ avec γ(0) =
σ2

1− φ2
. Cette équation récurrente est stable car |φ| < 1.

▶ En résolvant cette récurrence :

γ(h) = φh · σ2

1− φ2
= φhγ(0)

▶ La fonction d’autocorrélation est donc :

ρ(h) =
γ(h)

γ(0)
= φh
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Interprétation du paramètre autorégressif

▶
ρ(h) = φh

▶ Remarques :
▶ La fonction d’autocorrélation est non nulle à tout ordre
▶ Elle est décroissante (en valeur absolue) vers 0
▶ La vitesse de décroissance dépend de |φ|

▶ Interprétation : Le paramètre autorégressif φ s’interprète comme un paramètre
de persistance :
▶ Plus |φ| est proche de 1, plus lentement ρ(h) converge vers 0
▶ Plus |φ| est proche de 0, plus rapidement la mémoire du processus s’estompe
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Fonction d’autocorrélation du AR(1) : représentation graphique

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
−1

−0.5

0

0.5

1

h

ρ
(h
)
=
φ
h

φ = 0.9 φ = 0.5 φ = −0.5 φ = −0.9

φ > 0 : décroissance monotone. φ < 0 : décroissance oscillatoire.
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Densité spectrale du AR(1)
▶ Calcul : Pour le AR(1), Yt = φYt−1 + εt, on a :

f(ω) =
σ2

2π
· 1

|1− φe−iω|2

▶ En développant le module au carré :∣∣1− φe−iω
∣∣2 = (1− φe−iω)(1− φeiω) = 1 + φ2 − 2φ cos(ω)

▶ Densité spectrale du AR(1) :

f(ω) =
σ2

2π
· 1

1 + φ2 − 2φ cos(ω)
, ω ∈ [0, π]

▶ Remarque : Comparer avec la densité spectrale du MA(1) :

fMA(1)(ω) =
σ2

2π

(
1 + θ2 − 2θ cos(ω)

)
Le AR(1) et le MA(1) ont des spectres inverses l’un de l’autre.
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Densité spectrale du AR(1) : représentation graphique
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ω
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(ω

)
·2
π
/
σ
2

φ = 0.9 φ = 0.5 φ = −0.5 φ = −0.9 φ = 0

φ > 0 : énergie aux basses fréquences. φ < 0 : énergie aux hautes fréquences.
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AR(1) avec constante

▶ Exercice : Calculer les moments d’ordre 1 et 2 du processus :

Yt = c+ φYt−1 + εt

avec (εt, t ∈ Z) ∼ BB(0, σ2) et |φ| < 1, sous l’hypothèse de stationnarité.

▶ Espérance :

E[Yt] = c+ φE[Yt−1] ⇒ µ = c+ φµ ⇒ µ =
c

1− φ

▶ Variance et autocovariance : inchangées (la constante n’affecte pas les
moments centrés d’ordre 2).
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Intuition sur la persistance

▶ Question : Plus φ se rapproche de 1, plus Yt devient dépendant de son passé.
Que se passe-t-il dans le cas limite φ = 1 ?

▶ Pour répondre à cette question, nous allons recalculer les moments sans recourir
à l’hypothèse de stationnarité.

▶ Nous allons voir que :

▶ Si |φ| < 1, le processus converge vers une distribution stationnaire

▶ Si φ = 1, le processus n’admet pas de distribution stationnaire
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Condition initiale et solution explicite

▶ Supposons qu’il existe une condition initiale Y0 : une variable aléatoire
d’espérance µ0 et de variance σ20.

▶ On peut exprimer Yt en fonction de Y0 et des innovations entre 0 et t.

▶ En effet, par itération de la récurrence Yt = φYt−1 + εt :

Yt = φYt−1 + εt

= φ(φYt−2 + εt−1) + εt = φ2Yt−2 + φεt−1 + εt

= φ3Yt−3 + φ2εt−2 + φεt−1 + εt
...
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Solution explicite de l’AR(1)

▶ En itérant jusqu’à la condition initiale Y0, on obtient :

Yt = φtY0 +

t−1∑
i=0

φiεt−i

▶ On peut vérifier que cette expression est correcte en la substituant dans
l’expression récursive du processus AR(1).

▶ Il s’agit de la solution de l’équation récurrente stochastique.

▶ On peut utiliser cette expression pour calculer les moments de l’AR(1) sans
supposer la stationnarité.
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Espérance sans hypothèse de stationnarité

▶ Calcul de l’espérance :

E[Yt] = E

[
φtY0 +

t−1∑
i=0

φiεt−i

]

= φtE[Y0] +
t−1∑
i=0

φi E[εt−i]︸ ︷︷ ︸
=0

= φtµ0

▶ Observation : L’espérance dépend du temps t, sauf si l’espérance de la
condition initiale est nulle (µ0 = 0).
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Variance sans hypothèse de stationnarité

▶ Calcul de la variance :

V[Yt] = V

[
φtY0 +

t−1∑
i=0

φiεt−i

]

= φ2tV[Y0] +
t−1∑
i=0

φ2iV[εt−i]

= φ2tσ20 + σ2
t−1∑
i=0

φ2i

= φ2tσ20 + σ2 · 1− φ2t

1− φ2

▶ Observation : La variance dépend du temps t... sauf si σ20 =
σ2

1− φ2
.
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Condition de stationnarité

▶ Proposition : Si |φ| < 1, le processus stochastique Yt = φYt−1 + εt avec
εt ∼ BB(0, σ2) et condition initiale Y0 est stationnaire au second ordre si et
seulement si :

µ0 = 0 et σ20 =
σ2

1− φ2

▶ Pour que le processus soit stationnaire au second ordre, il faut et il suffit que les
moments de la condition initiale soient identiques aux moments stationnaires
que nous avions calculés précédemment.
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Interprétation : dynamique d’une distribution (1/2)

▶ Il faut bien comprendre la nature de l’équation :

Yt = φYt−1 + εt

▶ Une récurrence stochastique définit l’évolution dans le temps d’une distribution.

▶ Pour mieux comprendre, supposons que εt soit un bruit blanc gaussien et que la
condition initiale soit normalement distribuée :

εt ∼ N (0, σ2), Y0 ∼ N (µ0, σ
2
0)

▶ Puisque le modèle est linéaire, Yt sera normalement distribué pour tout t (une
combinaison linéaire de variables normales est normale).
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Interprétation : dynamique d’une distribution (2/2)

▶ À chaque période, la distribution de Yt évolue :

Y1 ∼ N (φµ0, φ
2σ20 + σ2)

Y2 ∼ N (φ2µ0, φ
4σ20 + (1 + φ2)σ2)

...

▶ En général, à chaque période :

µt = φµt−1, σ2t = φ2σ2t−1 + σ2

▶ Observation : L’espérance µt et la variance σ2t changent à chaque période !
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Convergence vers la distribution stationnaire

▶ Puisque |φ| < 1, on peut itérer indéfiniment. Asymptotiquement, Yt est
normalement distribué :

Yt
L−−−→

t→∞
N (µ∞, σ

2
∞)

avec :

µ∞ = lim
t→∞

φtµ0 = 0, σ2∞ = lim
t→∞

σ2t =
σ2

1− φ2

▶ Yt tend vers une distribution bien définie. Les moments asymptotiques µ∞ et σ2∞ :

▶ Ne dépendent pas de la distribution de la condition initiale

▶ Correspondent précisément aux moments calculés sous l’hypothèse de stationnarité
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Distribution stationnaire comme point fixe

▶ La récurrence stochastique Yt = φYt−1 + εt décrit la dynamique d’une
distribution.

▶ Pour toute condition initiale Y0, la dynamique converge vers une distribution

normale d’espérance nulle et de variance
σ2

1− φ2
.

▶ Point fixe : La loi N
(
0,

σ2

1− φ2

)
est l’attracteur de la récurrence stochastique.

C’est un point fixe dans l’espace des distributions : si Y0 a cette distribution, alors
la distribution est invariante pour tout t.
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Stationnarité asymptotique
▶ Définition : Un processus stochastique est asymptotiquement stationnaire au

second ordre s’il existe une distribution limite (quand t→ ∞) dont les moments
d’ordre 1 et 2 sont finis et constants.

▶ Astuce pratique : Utiliser la distribution asymptotique pour définir la condition
initiale !

▶ Pour que le modèle AR(1) soit asymptotiquement stationnaire au second ordre, il
faut et il suffit que |φ| < 1.

▶ En effet, la dynamique de la distribution est caractérisée par le système :

µt = φµt−1, σ2t = φ2σ2t−1 + σ2

Ce système est globalement stable si et seulement si |φ| < 1.
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Condition de stabilité et polynôme retard
▶ On dit que |φ| < 1 est une condition de stabilité de l’AR(1).

▶ Réécriture avec le polynôme retard :

Yt − φYt−1 = εt ⇔ (1− φL)Yt = εt

où Φ(L) = 1− φL.

▶ La condition de stabilité peut s’exprimer comme une restriction sur la racine du
polynôme retard :

Φ(z) = 0 ⇔ 1− φz = 0 ⇔ z =
1

φ

▶ Le processus est stable si la racine du polynôme retard est supérieure à 1 en
module : ∣∣∣∣ 1φ

∣∣∣∣ > 1 ⇔ |φ| < 1
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Représentation MA(∞) de l’AR(1)
▶ Sous la condition |φ| < 1, on peut inverser le polynôme retard (voir chapitre

précédent) et obtenir la représentation MA(∞) :

Yt = Φ(L)−1εt = (1− φL)−1εt =

∞∑
i=0

φiεt−i

▶ On retrouve cette expression en itérant vers le passé :

Yt = φsYt−s +
s−1∑
i=0

φiεt−i

▶ Quand s→ ∞, le terme φsYt−s → 0 (car |φ| < 1) et :

Yt =

∞∑
i=0

φiεt−i

▶ On obtient directement les moments de la distribution stationnaire.
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Propriété du modèle AR(1) si φ = 1

▶ Si φ = 1 (ou −1), nous savons que nous ne pouvons pas inverser le polynôme
retard.

▶ En pratique, cela signifie : il n’est pas possible de représenter le processus sous la
forme d’un MA(∞), et le processus n’admet pas de distribution stationnaire.

▶ Supposons que la condition initiale Y0 soit une variable aléatoire d’espérance µ0 et
de variance σ20.

▶ On montre facilement par récurrence arrière que :

Yt = Y0 +

t∑
i=1

εi
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Moments de la marche aléatoire

▶ Pour Yt = Y0 +
∑t

i=1 εi, calculons les moments :

▶ Espérance :

E[Yt] = µ0 +

t∑
i=1

E[εi] = µ0

▶ Variance :

V[Yt] = V[Y0] +
t∑

i=1

V[εi] = σ20 + tσ2

▶ Observation : L’espérance est constante, mais la variance croît linéairement
avec le temps !
⇒ Le processus stochastique est donc non stationnaire.
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Tendance stochastique

▶ Contrairement au cas |φ| < 1, la variance ne cesse jamais de croître.

▶ On parle alors de tendance stochastique.

▶ Il n’est donc pas possible de définir une distribution stationnaire, puisque la
variance augmente indéfiniment.

▶ Définition : Marche aléatoire : Un processus de la forme :

Yt = Yt−1 + εt

est appelé une marche aléatoire (random walk).
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Processus intégré d’ordre 1

▶ Notons que si la variance de Yt n’est pas définie (elle diverge), celle de ∆Yt est
bien définie :

∆Yt = Yt − Yt−1 = εt ∼ BB(0, σ2)

▶ Le processus différencié est un bruit blanc, a fortiori stationnaire au second ordre.

▶ Définition : Processus intégré : Un processus non stationnaire qui peut être
rendu stationnaire en le différenciant, c’est-à-dire en appliquant l’opérateur
différence première, est dit intégré d’ordre 1 (on note I(1)).

▶ La marche aléatoire est le cas le plus simple de processus I(1).
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Le cas |φ| > 1

▶ Problème : Si |φ| > 1, la dynamique est explosive : la variance diverge
exponentiellement.

▶ De plus, la représentation n’est pas causale. L’inversion du polynôme retard (qui
est possible avec |φ| > 1 mais dans l’autre sens) nous dit que Yt n’est plus
fonction des ε passés mais des ε futurs.

▶ Voir la fin du chapitre précédent sur l’inversion des polynômes retard.

▶ Remarque : Un modèle MA est toujours causal (par construction, Yt ne dépend
que des ε passés et présents).
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Construction de l’AR(2) par composition
▶ On peut considérer un modèle avec deux retards sur l’endogène. On peut créer un

processus AR(2) en composant deux processus AR(1).

▶ Soit le processus (Xt, t ∈ Z) défini par :

Xt = λ1Xt−1 + εt

avec |λ1| < 1 et εt ∼ BB(0, σ2).

▶ On construit le processus (Yt, t ∈ Z) comme :

Yt = λ2Yt−1 +Xt

avec |λ2| < 1.

▶ Le processus Yt dépend donc de Yt−1 et, indirectement via Xt, de Yt−2.
Remarque : (Xt) n’est pas l’innovation de (Yt).
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Dérivation de l’AR(2) par composition

▶ En utilisant les polynômes retard :

(1− λ1L)Xt = εt (∗), (1− λ2L)Yt = Xt (∗∗)

▶ En substituant (∗) dans (∗∗) :

(1− λ2L)Yt = (1− λ1L)
−1εt

⇔ (1− λ1L)(1− λ2L)Yt = εt

⇔ (1− (λ1 + λ2)L+ λ1λ2L
2)Yt = εt

▶ D’où :
Yt = (λ1 + λ2)Yt−1 − λ1λ2Yt−2 + εt

▶ avec φ1 = λ1 + λ2 et φ2 = −λ1λ2.
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Définition générale de l’AR(2)

▶ Définition : (Yt, t ∈ Z) est un processus AR(2) si :

Yt = φ1Yt−1 + φ2Yt−2 + εt

avec (εt, t ∈ Z) ∼ BB(0, σ2).

▶ Ce processus est stable (asymptotiquement stationnaire au second ordre et causal)
si les racines du polynôme retard :

Φ(L) = 1− φ1L− φ2L
2

sont supérieures à 1 en module.

▶ Remarque : Les racines du polynôme retard peuvent être complexes conjuguées,
même si le processus stochastique est à valeurs réelles ⇒ composante cyclique.
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Polynôme retard vs polynôme caractéristique
▶ Jusqu’ici nous avons discuté la stabilité en fonction des racines du polynôme

retard. On peut aussi utiliser le polynôme caractéristique (habituel en systèmes
dynamiques).

▶ Pour le modèle AR(2), le polynôme caractéristique est :

χ(λ) = λ2 − φ1λ− φ2

▶ Si zéro n’est pas une racine (ce qui arriverait si φ2 = 0, mais alors ce ne serait pas
un AR(2)), il existe une relation inverse entre les racines :

χ(λ) = λ2
(
1− φ1

1

λ
− φ2

1

λ2

)
= λ2ϕ

(
1

λ

)
▶ Ainsi λ∗ est racine de χ(λ) si et seulement si

1

λ∗
est racine de Φ(z).
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Condition de stabilité équivalente

▶ Condition de stabilité : La condition de stationnarité asymptotique au second
ordre est équivalente à :
▶ Les racines du polynôme retard Φ(z) = 1− φ1z − φ2z

2 sont > 1 en module
ou de façon équivalente :

▶ Les racines du polynôme caractéristique χ(λ) = λ2 − φ1λ− φ2 sont < 1 en
module (à l’intérieur du cercle unité)
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Conditions de stabilité de l’AR(2) (1/3)
▶ Question : Quelles sont les conditions sur φ1 et φ2 pour que le modèle soit stable

?

▶ Il faut que les racines du polynôme caractéristique χ(λ) = λ2 − φ1λ− φ2 soient
< 1 en module.

▶ Le discriminant est ∆ = φ2
1 + 4φ2.

▶ Cas complexe : Si ∆ < 0 (c’est-à-dire φ2 < −φ2
1
4 ), les racines sont complexes

conjuguées :

λ∗ =
φ1

2
± i

√
−∆

2

▶ Le module est |λ∗| =
√

φ2
1
4 + −∆

4 =
√
−φ2.

▶ Pour la stabilité : |λ∗| < 1 ⇔ φ2 > −1 .
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Conditions de stabilité de l’AR(2) (2/3)

▶ Cas réel : Si ∆ ≥ 0 (c’est-à-dire φ2 ≥ −φ2
1
4 ), les racines sont réelles :

λ1 =
φ1 +

√
∆

2
, λ2 =

φ1 −
√
∆

2

▶ Condition sur la plus grande racine λ1 : λ1 < 1 ⇔ φ1 +
√
∆ < 2 ⇔√

∆ < 2− φ1

▶ Si φ1 ≥ 2, cette condition n’est jamais satisfaite ⇒ non stationnaire.

▶ Si φ1 < 2, en élevant au carré : ∆ < (2− φ1)
2

φ2
1 + 4φ2 < 4− 4φ1 + φ2

1 ⇔ φ2 < 1− φ1
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Conditions de stabilité de l’AR(2) (3/3)
▶ Condition sur la plus petite racine λ2 : λ2 > −1 ⇔ φ1 −

√
∆ > −2 ⇔√

∆ < φ1 + 2

▶ Si φ1 ≤ −2, cette condition n’est jamais satisfaite ⇒ non stationnaire.

▶ Si φ1 > −2, en élevant au carré : ∆ < (φ1 + 2)2

φ2
1 + 4φ2 < φ2

1 + 4φ1 + 4 ⇔ φ2 < 1 + φ1

▶ Résumé : Conditions de stabilité de l’AR(2) :
φ2 > −1

φ2 < 1− φ1

φ2 < 1 + φ1
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Triangle de stabilité de l’AR(2)

▶ Les trois conditions définissent un triangle :

▶ φ2 > −1 : au-dessus de la droite horizontale φ2 = −1

▶ φ2 < 1− φ1 : en dessous de la droite passant par (0, 1) et (1, 0)

▶ φ2 < 1 + φ1 : en dessous de la droite passant par (0, 1) et (−1, 0)

▶ Les sommets du triangle sont : (−2,−1), (2,−1) et (0, 1).

▶ À l’intérieur de ce triangle : processus stable.

▶ À l’extérieur : processus instable (explosif ou avec racine unitaire).
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Triangle de stabilité (représentation graphique)

▶

φ1

φ2

φ2 = −1

φ2 = 1− φ1φ2 = 1 + φ1

(−2,−1) (2,−1)

(0, 1)

φ2 = −φ2
1
4

Racines réelles

Racines complexes

▶ ∆ > 0 (au-dessus de la parabole) : deux racines réelles distinctes
▶ ∆ < 0 (en dessous de la parabole) : deux racines complexes conjuguées
▶ ∆ = 0 (sur la parabole) : racine réelle double
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Moments de l’AR(2) : Espérance

▶ Calculons les moments du processus AR(2) :

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt

avec (εt, t ∈ Z) ∼ BB(0, σ2), en supposant que φ1 et φ2 satisfont les conditions
de stationnarité.

▶ Espérance :
E[Yt] = c+ φ1E[Yt−1] + φ2E[Yt−2]

▶ Sous stationnarité, E[Yt] = E[Yt−1] = E[Yt−2] = µ, donc :

µ = c+ φ1µ+ φ2µ ⇒ µ =
c

1− φ1 − φ2
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Moments de l’AR(2) : Variance (difficulté)

▶ Calcul de la variance : On ne peut pas suivre la même approche que pour
l’AR(1). Par définition :

V[Yt] = V[c+ φ1Yt−1 + φ2Yt−2 + εt]

▶ Comme c est déterministe et εt est une innovation :

V[Yt] = V[φ1Yt−1 + φ2Yt−2] + σ2

▶ Problème : Yt−1 et Yt−2 sont très probablement corrélés. On ne peut pas
simplement « casser » la variance sans connaître la covariance entre Yt−1 et Yt−2.
⇒ Il n’est pas possible de calculer γ(0) indépendamment de γ(1).
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Fonction d’autocovariance de l’AR(2) : processus centré

▶ Notons Ỹt = Yt − µ le processus centré. On peut montrer que :

Ỹt = φ1Ỹt−1 + φ2Ỹt−2 + εt

▶ C’est le même processus mais sans constante.

▶ Démonstration :

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt

Yt = µ(1− φ1 − φ2) + φ1Yt−1 + φ2Yt−2 + εt

Yt − µ = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt

▶ La fonction d’autocovariance de (Yt) est identique à celle du processus centré (Ỹt).
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Équations de Yule-Walker (1/2)

▶ Calculons γ(h) = E[ỸtỸt−h].

▶ Pour h = 0 :

E[Ỹ 2
t ] = E[(φ1Ỹt−1 + φ2Ỹt−2 + εt)Ỹt]

γ(0) = φ1γ(1) + φ2γ(2) + E[εtỸt]︸ ︷︷ ︸
à calculer

▶ Or Ỹt = φ1Ỹt−1 + φ2Ỹt−2 + εt, donc :

E[εtỸt] = φ1 E[εtỸt−1]︸ ︷︷ ︸
=0

+φ2 E[εtỸt−2]︸ ︷︷ ︸
=0

+E[ε2t ] = σ2

▶ D’où : γ(0) = φ1γ(1) + φ2γ(2) + σ2
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Équations de Yule-Walker (2/2)

▶ Pour h = 1 :

ỸtỸt−1 = φ1Ỹ
2
t−1 + φ2Ỹt−2Ỹt−1 + εtỸt−1

γ(1) = φ1γ(0) + φ2γ(1) + 0

⇒ γ(1) =
φ1

1− φ2
γ(0)

▶ Pour h = 2 :

γ(2) = φ1γ(1) + φ2γ(0)

▶ Pour h ≥ 2 : La récurrence générale est :

γ(h) = φ1γ(h− 1) + φ2γ(h− 2)
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Résolution du système de Yule-Walker
▶ Nous avons un système de 3 équations à 3 inconnues :

γ(0) = φ1γ(1) + φ2γ(2) + σ2

γ(1) = φ1γ(0) + φ2γ(1)

γ(2) = φ1γ(1) + φ2γ(0)

▶ De la deuxième équation : γ(1) =
φ1

1− φ2
γ(0)

▶ En substituant dans la troisième :

γ(2) =
φ2
1

1− φ2
γ(0) + φ2γ(0) =

φ2
1 + φ2 − φ2

2

1− φ2
γ(0)

▶ En substituant dans la première et après simplification :

γ(0) =
(1− φ2)σ

2

(1 + φ2)[(1− φ2)2 − φ2
1]
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Vérification et formules complètes
▶ On vérifie facilement que pour φ2 = 0, cette formule redonne le résultat du modèle

AR(1) :

γ(0) =
σ2

1− φ2
1

▶ Formules complètes :

γ(0) =
(1− φ2)σ

2

(1 + φ2)[(1− φ2)2 − φ2
1]

γ(1) =
φ1

1− φ2
γ(0) =

φ1σ
2

(1 + φ2)[(1− φ2)2 − φ2
1]

▶ Ensuite, la fonction d’autocovariance est définie récursivement :

γ(h) = φ1γ(h− 1) + φ2γ(h− 2) pour h ≥ 2
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Propriétés de l’autocovariance de l’AR(2)

▶ Remarque : Comme pour le modèle AR(1), la fonction d’autocovariance est non
nulle à tout ordre et converge vers 0 (si φ1 et φ2 sont tels que le modèle est
stable).

▶ La fonction d’autocorrélation est :

ρ(h) =
γ(h)

γ(0)

▶ Elle vérifie aussi la récurrence :

ρ(h) = φ1ρ(h− 1) + φ2ρ(h− 2) pour h ≥ 1

avec ρ(0) = 1 et ρ(1) =
φ1

1− φ2
.
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Représentation MA(∞) de l’AR(2)
▶ Si le processus AR(2) est asymptotiquement stationnaire, alors il admet une

représentation MA(∞) :

Yt = µ+

∞∑
i=0

ψiεt−i = µ+ ψ(L)εt

▶ Pour identifier ψ(L) et µ, il « suffit » d’inverser le polynôme retard. L’AR(2)
s’écrit :

Φ(L)Yt = c+ εt ⇒ Yt = Φ(L)−1c+Φ(L)−1εt

▶ Appliquer un opérateur retard à une constante ne change rien, donc
Φ(L)−1c = Φ(1)−1c.

▶ Par identification :
µ =

c

1− φ1 − φ2

(l’espérance de Yt, comme attendu).
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Calcul des coefficients ψi (1/2)

▶ On doit avoir ψ(L) = Φ(L)−1, c’est-à-dire Φ(L)ψ(L) = 1 :

(1− φ1L− φ2L
2)

∞∑
i=0

ψiL
i = 1

▶ En développant et regroupant par puissances de L :

∞∑
i=0

ψiL
i − φ1

∞∑
i=0

ψiL
i+1 − φ2

∞∑
i=0

ψiL
i+2 = 1

▶ Soit :
∞∑
i=0

(ψi − φ1ψi−1 − φ2ψi−2)L
i = 1

avec la convention ψ−1 = ψ−2 = 0.
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Calcul des coefficients ψi (2/2)
▶ Par identification des coefficients :

ψ0 = 1

ψ1 − φ1ψ0 = 0 ⇒ ψ1 = φ1

ψ2 − φ1ψ1 − φ2ψ0 = 0 ⇒ ψ2 = φ2
1 + φ2

...

▶ Récurrence générale :

ψi = φ1ψi−1 + φ2ψi−2 pour i ≥ 2

avec ψ0 = 1 et ψ1 = φ1.

▶ On peut résoudre ce système récursivement : la deuxième équation donne ψ1, la
troisième donne ψ2, etc.
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Résumé AR(2)

▶ L’AR(2) se définit par Yt = φ1Yt−1 + φ2Yt−2 + εt

▶ Conditions de stabilité (triangle) :

φ2 > −1, φ2 < 1− φ1, φ2 < 1 + φ1

▶ L’espérance (avec constante c) est µ =
c

1− φ1 − φ2

▶ La variance et les autocovariances se calculent via les équations de Yule-Walker
▶ La fonction d’autocovariance vérifie γ(h) = φ1γ(h− 1) + φ2γ(h− 2)

▶ Sous stationnarité, l’AR(2) admet une représentation MA(∞)
▶ Les racines complexes du polynôme caractéristique engendrent des cycles
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Définition de l’AR(p)
▶ Définition : Soit (εt, t ∈ Z) ∼ BB(0, σ2). Le processus stochastique (Yt, t ∈ Z)

est un processus autorégressif d’ordre p si :

Yt = c+

p∑
i=1

φiYt−i + εt

avec c et (φi)
p
i=1 des paramètres réels.

▶ Le processus est asymptotiquement stationnaire au second ordre si :

▶ Les racines du polynôme retard Φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p sont > 1 en
module

▶ Ou de façon équivalente : les racines du polynôme caractéristique
χ(λ) = λp − φ1λ

p−1 − · · · − φp sont < 1 en module
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Remarque sur les conditions de stabilité

▶ Important : Il n’est plus possible d’obtenir de façon générale des restrictions
explicites sur les paramètres autorégressifs pour assurer la stabilité du processus
AR(p).
Il faut vérifier au cas par cas en calculant les racines du polynôme retard (ou du
polynôme caractéristique).

▶ Pour p = 1 : condition simple |φ1| < 1.

▶ Pour p = 2 : triangle de stationnarité (conditions explicites sur φ1 et φ2).

▶ Pour p ≥ 3 : pas de formule générale simple.
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Espérance de l’AR(p)
▶ Sous l’hypothèse de stationnarité au second ordre, calculons l’espérance.

▶
Yt = c+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt

▶ En prenant l’espérance :

E[Yt] = c+ φ1E[Yt−1] + φ2E[Yt−2] + · · ·+ φpE[Yt−p]

▶ Sous stationnarité, E[Yt] = µ pour tout t, donc :

µ = c+ φ1µ+ · · ·+ φpµ = c+ µ

p∑
i=1

φi

▶ D’où :
µ =

c

1− φ1 − φ2 − · · · − φp
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Autocovariance de l’AR(p) : processus centré

▶ Centrons le processus en définissant Ỹt = Yt − µ. On montre que :

Ỹt = φ1Ỹt−1 + φ2Ỹt−2 + · · ·+ φpỸt−p + εt

▶ L’autocovariance d’ordre h est γ(h) = E[ỸtỸt−h].

▶ Pour tout h ≥ 0 :

ỸtỸt−h = φ1Ỹt−1Ỹt−h + · · ·+ φpỸt−pỸt−h + εtỸt−h

▶ En prenant l’espérance :

γ(h) = φ1γ(h− 1) + φ2γ(h− 2) + · · ·+ φpγ(h− p) + E[εtỸt−h]

▶ avec E[εtỸt−h] = σ2 si h = 0, et 0 sinon (innovation).

cz e18cd8d – 89/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Équations de Yule-Walker pour l’AR(p)

▶ On obtient la fonction d’autocovariance en résolvant le système linéaire :

γ(0) = φ1γ(1) + φ2γ(2) + · · ·+ φpγ(p) + σ2

γ(1) = φ1γ(0) + φ2γ(1) + · · ·+ φpγ(p− 1)

γ(2) = φ1γ(1) + φ2γ(0) + · · ·+ φpγ(p− 2)
...
γ(p) = φ1γ(p− 1) + φ2γ(p− 2) + · · ·+ φpγ(0)

▶ Les termes suivants sont obtenus par récurrence :

γ(h) = φ1γ(h− 1) + φ2γ(h− 2) + · · ·+ φpγ(h− p) pour h > p
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Du MA vers l’AR : inversibilité

▶ Nous avons montré qu’on peut réécrire un processus AR comme un MA(∞) si les
racines du polynôme retard sont > 1 en module.

▶ Question : Est-il possible de faire le chemin inverse ? C’est-à-dire d’écrire un
processus MA sous la forme d’un AR(∞) ?

▶ La réponse est oui, sous certaines conditions.
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Exemple : inversibilité du MA(1) (1/2)
▶ Supposons que (Yt, t ∈ Z) soit un MA(1) :

Yt = εt + θεt−1

avec (εt, t ∈ Z) ∼ BB(0, σ2).

▶ En t− 1 : Yt−1 = εt−1 + θεt−2, donc εt−1 = Yt−1 − θεt−2.

▶ En substituant dans l’équation du MA(1) :

Yt = εt + θYt−1 − θ2εt−2

▶ En t− 2 : εt−2 = Yt−2 − θεt−3. En substituant :

Yt = εt + θYt−1 − θ2Yt−2 + θ3εt−3

cz e18cd8d – 93/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Exemple : inversibilité du MA(1) (2/2)

▶ Si |θ| < 1, on peut continuer ainsi indéfiniment :

Yt =

∞∑
i=1

(−θ)iYt−i + εt

▶ C’est un processus AR(∞) !

▶ Implicitement, nous avons inversé le polynôme retard Θ(L) = 1 + θL.

▶ Condition d’inversibilité : Pour que cela soit possible (plus généralement pour un
MA(q)), il faut que toutes les racines du polynôme Θ(z) = 1 + θ1z + · · ·+ θqz

q

soient > 1 en module.
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Définition de l’inversibilité

▶ Définition : Un processus MA(q) est dit inversible s’il est possible de le réécrire
sous la forme d’un AR(∞).

▶ Condition d’inversibilité : Le processus MA(q) défini par :

Yt = εt + θ1εt−1 + · · ·+ θqεt−q = Θ(L)εt

est inversible si et seulement si les racines du polynôme
Θ(z) = 1 + θ1z + · · ·+ θqz

q sont > 1 en module.

▶ Remarque : Un modèle MA est toujours causal (par construction). Un modèle
AR est toujours inversible (par construction).
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Motivation : somme de deux AR(1)
▶ Soient (Yt, t ∈ Z) et (Xt, t ∈ Z) deux processus AR(1) :

Yt = φY Yt−1 + εY,t, Xt = φXXt−1 + εX,t

avec |φY | < 1, |φX | < 1, (εY,t) et (εX,t) des bruits blancs indépendants.

▶ Définissons Zt = Xt + Yt. Est-ce que (Zt) est un processus AR ?

▶ Réponse : Non !

▶ En utilisant les polynômes retard et après calculs (voir notes), on montre que :

Zt − (φX + φY )Zt−1 + φXφY Zt−2 = St

où St est un processus MA(1).
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La somme de deux AR(1) est un ARMA(2,1)
▶ Après calculs, on montre que St = εX,t + εY,t − φXεY,t−1 − φY εX,t−1 a la

structure d’un MA(1). En effet :

γS(0) = (1 + φ2
Y )σ

2
X + (1 + φ2

X)σ2Y

γS(1) = −φXσ
2
Y − φY σ

2
X

γS(h) = 0 pour |h| > 1

C’est bien la structure d’un MA(1) : St = ηt − θηt−1.

▶ Conclusion : La somme des deux AR(1) s’écrit :

Zt = φ1Zt−1 + φ2Zt−2 + ηt − θηt−1

▶ C’est un processus ARMA(2,1) : deux retards sur la partie AR, un retard sur la
partie MA.
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Paramètres de la partie MA(1) (1/2)
▶ Pour un MA(1) St = ηt − θηt−1 avec ηt ∼ BB(0, σ2η) :

γS(0) = (1 + θ2)σ2η, γS(1) = −θσ2η

▶ Posons A = (1 + φ2
Y )σ

2
X + (1 + φ2

X)σ2Y et B = φXσ
2
Y + φY σ

2
X . En identifiant :

(1 + θ2)σ2η = A, θσ2η = B

▶ En divisant et réarrangeant : Bθ2 −Aθ +B = 0, soit :

θ =
A±

√
A2 − 4B2

2B

Les deux racines sont θ et 1/θ. On choisit |θ| < 1 (inversibilité). Puis σ2η = B/θ.
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Unicité de la solution inversible

▶ L’équation Bθ2 −Aθ +B = 0 a deux racines de produit B/B = 1 (Vieta).

▶ Il suffit de montrer que le discriminant ∆ = A2 − 4B2 est strictement positif
(racines réelles distinctes), car alors une racine vérifie |θ| < 1 et l’autre |1/θ| > 1.

▶ En développant :

A2 − 4B2 = (1−φ2
Y )

2σ4X +2
[
(1−φXφY )

2 + (φX −φY )
2
]
σ2Xσ

2
Y + (1−φ2

X)2σ4Y

▶ Puisque |φX | < 1 et |φY | < 1, chaque terme est ≥ 0 et les termes extrêmes sont
> 0, donc ∆ > 0. La solution inversible |θ| < 1 existe et est unique.
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Paramètres de la partie MA(1) (2/2)
▶ Cas symétrique : φX = φY = φ, σ2X = σ2Y = σ2.

▶ On obtient A = 2(1 + φ2)σ2 et B = 2φσ2.

▶ L’équation Bθ2 −Aθ +B = 0 donne :

θ =
2(1 + φ2)± 2(1− φ2)

4φ
=

(1 + φ2)± (1− φ2)

2φ

▶ Les deux solutions sont θ = φ et θ = 1/φ. Comme |φ| < 1, la solution inversible
est θ = φ.

▶ La variance de l’innovation est σ2η = B/θ = 2φσ2/φ = 2σ2.
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Définition du processus ARMA(p,q)

▶ Définition : Le processus (Yt, t ∈ Z) est un processus ARMA(p,q) s’il est défini
par :

Yt = c+ φ1Yt−1 + · · ·+ φpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q

avec (εt, t ∈ Z) ∼ BB(0, σ2) et c, (φi), (θj) des paramètres réels.

▶ Écriture avec polynômes retard :

Φ(L)Yt = c+Θ(L)εt

avec Φ(L) = 1− φ1L− · · · − φpL
p et Θ(L) = 1 + θ1L+ · · ·+ θqL

q.
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Condition de représentation minimale
▶ Hypothèse importante : On suppose que les racines des polynômes Φ(z) et Θ(z)

sont distinctes, de façon à assurer que la représentation ARMA soit minimale.

▶ Exemple de représentation non minimale :

Yt − aYt−1 = εt − aεt−1

▶ Cela semble être un ARMA(1,1), mais en fait :

(1− aL)Yt = (1− aL)εt

▶ Les deux polynômes retard ont la même racine ! En simplifiant :

Yt = εt

▶ C’est simplement un bruit blanc.
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Stationnarité et inversibilité

▶ Stationnarité : Le processus ARMA(p,q) est asymptotiquement stationnaire
au second ordre si et seulement si les racines de Φ(z) sont > 1 en module.
(Condition sur la partie AR uniquement)

▶ Inversibilité : Le processus ARMA(p,q) est inversible (on peut le réécrire sous
forme AR(∞)) si et seulement si les racines de Θ(z) sont > 1 en module.
(Condition sur la partie MA uniquement)

▶ Un processus ARMA peut être stationnaire sans être inversible, et vice versa.
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Espérance de l’ARMA(p,q)

▶ Sous l’hypothèse de stationnarité, calculons l’espérance.

▶ En prenant l’espérance de l’équation définissant le processus :

E[Yt] = c+ φ1E[Yt−1] + · · ·+ φpE[Yt−p] + E[εt] + θ1E[εt−1] + · · ·

▶ Sachant que E[εt] = 0 et que l’espérance est constante :

µ = c+ φ1µ+ · · ·+ φpµ

▶ D’où :
µ =

c

1− φ1 − · · · − φp

▶ L’espérance ne dépend que de la partie AR du modèle.
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Autocovariance : processus centré

▶ Pour calculer la fonction d’autocovariance γ(h) = E[(Yt − µ)(Yt−h − µ)], on
centre le processus.

▶ On pose Ỹt = Yt − µ. On peut montrer que :

Ỹt = φ1Ỹt−1 + · · ·+ φpỸt−p + εt + θ1εt−1 + · · ·+ θqεt−q

▶ C’est le même modèle ARMA(p,q) mais sans constante.

▶ Démonstration : En substituant µ = c/(1−
∑
φi) dans l’équation originale et en

simplifiant.
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Exemple détaillé : ARMA(1,1)

▶ Soit le processus ARMA(1,1) :

Yt − φYt−1 = ξ + εt − θεt−1

avec |φ| < 1, |θ| < 1, φ ̸= θ.

▶ Espérance :

µ =
ξ

1− φ

▶ Processus centré : Ỹt = Yt − µ vérifie :

Ỹt = φỸt−1 + εt − θεt−1
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ARMA(1,1) : calcul de γ(0) (1/2)

▶ En multipliant l’équation centrée par Ỹt et en prenant l’espérance :

γ(0) = φγ(1) + E[(Ỹt)εt]− θE[(Ỹt)εt−1]

▶ Calcul de E[Ỹtεt] : Puisque Ỹt = φỸt−1 + εt − θεt−1 :

E[Ỹtεt] = E[(φỸt−1 + εt − θεt−1)εt] = σ2

car εt est une innovation (orthogonale au passé de Y ).
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ARMA(1,1) : calcul de γ(0) (2/2)

▶ Calcul de E[Ỹtεt−1] :

E[Ỹtεt−1] = E[(φỸt−1 + εt − θεt−1)εt−1]

= φE[Ỹt−1εt−1]− θσ2

= φE[(φỸt−2 + εt−1 − θεt−2)εt−1]− θσ2

= φσ2 − θσ2 = (φ− θ)σ2

▶ Ainsi :
γ(0) = φγ(1) + σ2(1 + θ2 − φθ)
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ARMA(1,1) : calcul de γ(1)

▶ En multipliant l’équation centrée par Ỹt−1 et en prenant l’espérance :

γ(1) = φγ(0) + E[Ỹt−1εt]− θE[Ỹt−1εt−1]

▶ E[Ỹt−1εt] = 0 car Ỹt−1 ne dépend pas de εt

▶ E[Ỹt−1εt−1] = σ2 (même calcul que précédemment)

▶ Donc :
γ(1) = φγ(0)− θσ2
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ARMA(1,1) : résolution du système

▶ Nous avons le système :{
γ(0) = φγ(1) + σ2(1 + θ2 − φθ)

γ(1) = φγ(0)− θσ2

▶ En substituant la deuxième équation dans la première :

γ(0) = φ(φγ(0)− θσ2) + σ2(1 + θ2 − φθ)

▶ Soit :
(1− φ2)γ(0) = σ2(1 + θ2 − 2φθ)

▶ D’où :

γ(0) = σ2
θ2 − 2φθ + 1

1− φ2
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ARMA(1,1) : fonction d’autocovariance complète
▶ Résultat : 

γ(0) = σ2
θ2 − 2φθ + 1

1− φ2

γ(1) = φγ(0)− θσ2

γ(h) = φγ(h− 1) ∀|h| > 1

▶ Vérifications :

▶ Si θ = 0 : on retrouve la fonction d’autocovariance de l’AR(1)

▶ Si φ = 0 : on retrouve la fonction d’autocovariance du MA(1)

▶ Propriété générale : Dès que h > q (l’ordre de la partie MA), le retour à zéro de
γ(h) est gouverné par la partie AR (dynamique géométrique).
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Le modèle ARMA(p,q)

Fonction génératrice des autocovariances

Résumé et comparaison
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La fonction génératrice des autocovariances
▶ Soit {Xt} un processus stationnaire d’autocovariance γ(h) = Cov(Xt, Xt−h). La

fonction génératrice des autocovariances (FGACV) est définie par :

gX(z) =

+∞∑
h=−∞

γ(h)zh

où z est une variable complexe.

▶ Puisque γ(−h) = γ(h) (symétrie), on a gX(z) = gX(z−1).

▶ Sur le cercle unité z = e−iω, la FGACV donne la densité spectrale :

fX(ω) =
1

2π
gX(e−iω)

▶ La série converge absolument pour |z| = 1 lorsque
∑

h |γ(h)| <∞.
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Le processus ARMA(p, q)

▶ Considérons le processus ARMA(p, q) :

Φ(L)Xt = Θ(L)εt

où Φ(L) = 1− ϕ1L− · · · − ϕpL
p est le polynôme AR,

Θ(L) = 1 + θ1L+ · · ·+ θqL
q est le polynôme MA, εt ∼ BB(0, σ2) est un bruit

blanc et L est l’opérateur retard.

▶ Condition de stationnarité : toutes les racines de Φ(z) = 0 sont à l’extérieur du
cercle unité.

▶ Condition d’inversibilité : toutes les racines de Θ(z) = 0 sont à l’extérieur du
cercle unité.
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Représentation MA(∞)

▶ Sous la condition de stationnarité, le processus admet une représentation de Wold :

Xt = ψ(L)εt =

∞∑
j=0

ψjεt−j

où ψ(L) = Θ(L)/Φ(L) =
∑∞

j=0 ψjL
j avec ψ0 = 1.

▶ Les coefficients ψj sont obtenus en développant Θ(z)/Φ(z) en série entière :

ψ(z) =
Θ(z)

Φ(z)
pour |z| ≤ 1

▶ La série
∑∞

j=0 |ψj | <∞ est garantie par la stationnarité.

cz e18cd8d – 116/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Autocovariance à partir de la représentation MA(∞)

▶ Pour le processus MA(∞) Xt =
∑∞

j=0 ψjεt−j , l’autocovariance est :

γ(h) = Cov

 ∞∑
j=0

ψjεt−j ,

∞∑
k=0

ψkεt−h−k



▶ Puisque Cov(εt−j , εt−h−k) = σ21{j=h+k}, on obtient pour h ≥ 0 :

γ(h) = σ2
∞∑
j=0

ψjψj+h

▶ Par symétrie, γ(−h) = γ(h).
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Démonstration de la FGACV : étape 1

Partons de la définition :

gX(z) =

+∞∑
h=−∞

γ(h)zh

Substituons la formule de l’autocovariance pour h ≥ 0 :

gX(z) =

−1∑
h=−∞

γ(|h|)zh + γ(0) +

∞∑
h=1

γ(h)zh

En utilisant γ(h) = σ2
∑∞

j=0 ψjψj+|h| :

gX(z) = σ2
+∞∑

h=−∞

 ∞∑
j=0

ψjψj+|h|

 zh

cz e18cd8d – 118/150 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Démonstration de la FGACV : étape 2

En réarrangeant la double somme (le théorème de Fubini s’applique grâce à la
convergence absolue) :

gX(z) = σ2
∞∑
j=0

∞∑
k=0

ψjψkz
k−j

Ceci peut se factoriser :

gX(z) = σ2

 ∞∑
j=0

ψjz
−j

( ∞∑
k=0

ψkz
k

)

= σ2 ψ(z−1)ψ(z)
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Démonstration de la FGACV : étape 3

▶ Rappelons que ψ(z) = Θ(z)/Φ(z). Donc ψ(z−1) = Θ(z−1)/Φ(z−1).

▶ En substituant :

gX(z) = σ2 · Θ(z−1)

Φ(z−1)
· Θ(z)

Φ(z)

▶ La FGACV d’un processus ARMA(p, q) est donc :

gX(z) = σ2
Θ(z)Θ(z−1)

Φ(z)Φ(z−1)
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Interprétation de la formule

gX(z) = σ2
Θ(z)Θ(z−1)

Φ(z)Φ(z−1)

▶ Le numérateur Θ(z)Θ(z−1) capture la contribution de la composante MA.

▶ Le dénominateur Φ(z)Φ(z−1) capture la contribution de la composante AR.

▶ Les produits comme Θ(z)Θ(z−1) assurent la symétrie : si on remplace z par z−1,
la FGACV reste inchangée.

▶ Sur le cercle unité (z = e−iω) :

gX(e−iω) = σ2
|Θ(e−iω)|2

|Φ(e−iω)|2

puisque Θ(eiω) = Θ(e−iω).
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Cas particuliers
▶ Processus MA(q) pur (Φ(z) = 1) :

gX(z) = σ2Θ(z)Θ(z−1)

▶ Processus AR(p) pur (Θ(z) = 1) :

gX(z) =
σ2

Φ(z)Φ(z−1)

▶ Bruit blanc (Φ(z) = Θ(z) = 1) :

gε(z) = σ2

ce qui confirme que γ(0) = σ2 et γ(h) = 0 pour h ̸= 0.
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Processus MA(1) : mise en place

▶ Considérons le processus MA(1) :

Xt = εt + θεt−1, εt ∼ BB(0, σ2)

avec |θ| < 1 pour l’inversibilité.

▶ Polynômes : Φ(z) = 1 (pas de composante AR) et Θ(z) = 1 + θz.

▶ Formule de la FGACV :

gX(z) = σ2Θ(z)Θ(z−1) = σ2(1 + θz)(1 + θz−1)
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Processus MA(1) : développement de la FGACV

▶ Développons le produit :

gX(z) = σ2(1 + θz)(1 + θz−1)

= σ2
(
1 + θz−1 + θz + θ2

)
= σ2

(
θz−1 + (1 + θ2) + θz

)

▶ C’est un polynôme de Laurent avec des termes en z−1, z0 et z1 uniquement.

▶ Le coefficient de zh donne γ(h).
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Processus MA(1) : autocovariances
▶ De gX(z) = σ2

(
θz−1 + (1 + θ2) + θz

)
, on lit les autocovariances :

γ(0) = σ2(1 + θ2) (coefficient de z0)

γ(±1) = σ2θ (coefficient de z±1)
γ(h) = 0 pour |h| ≥ 2

▶ Autocorrélation d’ordre 1 :

ρ1 =
γ(1)

γ(0)
=

θ

1 + θ2

▶ |ρ1| ≤ 1/2 pour tout θ, avec maximum atteint pour θ = 1.
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Processus MA(1) : illustration graphique

−3 −2 −1 1 2 3

θ

1 + θ2

Retard h

γ(h)/σ2

Fonction d’autocovariance du MA(1) avec θ = 0,6

La fonction d’autocovariance du MA(1) a un support fini : elle « s’annule » après le
retard 1.
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Processus AR(1) : mise en place

▶ Considérons le processus AR(1) :

Xt = ϕXt−1 + εt, εt ∼ BB(0, σ2)

avec |ϕ| < 1 pour la stationnarité.

▶ Polynômes : Φ(z) = 1−ϕz (polynôme AR) et Θ(z) = 1 (pas de composante MA).

▶ Formule de la FGACV :

gX(z) =
σ2

Φ(z)Φ(z−1)
=

σ2

(1− ϕz)(1− ϕz−1)
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Processus AR(1) : développement en série

▶ Pour extraire les autocovariances, développons en série de Laurent. Puisque
|ϕ| < 1 :

1

1− ϕz
=

∞∑
j=0

ϕjzj et
1

1− ϕz−1
=

∞∑
k=0

ϕkz−k

▶ Par conséquent :

gX(z) = σ2

 ∞∑
j=0

ϕjzj

( ∞∑
k=0

ϕkz−k

)

= σ2
∞∑
j=0

∞∑
k=0

ϕj+kzj−k
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Processus AR(1) : extraction des coefficients

▶ Le coefficient de zh (pour h ≥ 0) est obtenu lorsque j − k = h, soit j = k + h :

γ(h) = σ2
∞∑
k=0

ϕ(k+h)+k = σ2ϕh
∞∑
k=0

ϕ2k

▶ Puisque
∑∞

k=0 ϕ
2k = 1

1−ϕ2 :

γ(h) =
σ2ϕ|h|

1− ϕ2
= γ(0)ϕ|h|

où γ(0) =
σ2

1− ϕ2
est la variance.
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Processus AR(1) : propriétés

▶ γ(h) = γ(0)ϕ|h| décroît géométriquement (décroissance exponentielle).

▶ Si ϕ > 0, toutes les autocovariances sont positives (persistance). Si ϕ < 0, les
autocovariances alternent en signe (oscillation).

▶ La demi-vie est h∗ = − log(2)/ log(|ϕ|).

▶ Fonction d’autocorrélation :
ρh =

γ(h)

γ(0)
= ϕ|h|

La FAC de l’AR(1) « décroît » exponentiellement, contrairement au MA(1) qui «
s’annule ».
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Processus AR(1) : illustration graphique

−5 −4 −3 −2 −1 1 2 3 4 5

0.5

1

Retard h

ρh = ϕ|h|

Fonction d’autocorrélation de l’AR(1) avec ϕ = 0,7

La FAC décroît exponentiellement avec l’enveloppe ϕ|h| (ligne pointillée).
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Processus ARMA(1,1) : mise en place

▶ Considérons le processus ARMA(1,1) :

Xt − ϕXt−1 = εt + θεt−1, εt ∼ BB(0, σ2)

avec |ϕ| < 1 et |θ| < 1.

▶ Polynômes : Φ(z) = 1− ϕz et Θ(z) = 1 + θz.

▶ Formule de la FGACV :

gX(z) = σ2
(1 + θz)(1 + θz−1)

(1− ϕz)(1− ϕz−1)
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Processus ARMA(1,1) : développement du numérateur
▶ Développons le numérateur :

(1 + θz)(1 + θz−1) = θz−1 + (1 + θ2) + θz

▶ Donc :

gX(z) = σ2
θz−1 + (1 + θ2) + θz

(1− ϕz)(1− ϕz−1)

▶ On peut écrire ceci comme une somme de trois termes :

gX(z) =
σ2θz−1

(1− ϕz)(1− ϕz−1)
+

σ2(1 + θ2)

(1− ϕz)(1− ϕz−1)
+

σ2θz

(1− ϕz)(1− ϕz−1)
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Processus ARMA(1,1) : utilisation du résultat AR(1)

▶ D’après l’analyse de l’AR(1), le coefficient de zh dans
1

(1− ϕz)(1− ϕz−1)
est

ch =
ϕ|h|

1− ϕ2
.

▶ Chaque terme contribue à γ(h) :
▶ (1 + θ2)ch pour le terme constant

▶ θch+1 pour le terme en z−1

▶ θch−1 pour le terme en z

▶ Par conséquent :

γ(h) = σ2
[
(1 + θ2)ch + θch+1 + θch−1

]
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Processus ARMA(1,1) : variance γ(0)

▶ Pour h = 0 :

γ(0) = σ2
[
(1 + θ2)c0 + θc1 + θc−1

]
= σ2

[
1 + θ2

1− ϕ2
+

2θϕ

1− ϕ2

]

▶ D’où la variance de l’ARMA(1,1) :

γ(0) =
σ2(1 + 2θϕ+ θ2)

1− ϕ2
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Processus ARMA(1,1) : première autocovariance γ(1)

▶ Pour h = 1 :

γ(1) = σ2
[
(1 + θ2)c1 + θc2 + θc0

]
=

σ2

1− ϕ2
[
(1 + θ2)ϕ+ θϕ2 + θ

]
=
σ2(ϕ+ θ)(1 + θϕ)

1− ϕ2

▶ D’où :

γ(1) =
σ2(1 + θϕ)(ϕ+ θ)

1− ϕ2
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Processus ARMA(1,1) : autocovariances d’ordre supérieur

▶ Pour h ≥ 2, la récurrence de Yule-Walker donne :

γ(h) = ϕγ(h− 1) pour h ≥ 2

▶ Vérification : multiplions Xt − ϕXt−1 = εt + θεt−1 par Xt−h et prenons
l’espérance :

γ(h)− ϕγ(h− 1) = E[εtXt−h] + θE[εt−1Xt−h]

Pour h ≥ 2, les deux espérances sont nulles car εt et εt−1 sont non corrélés avec
Xt−h.

▶ Donc γ(h) = ϕh−1γ(1) pour h ≥ 1.
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Processus ARMA(1,1) : solution complète

▶ Autocovariances de l’ARMA(1,1) :

γ(0) =
σ2(1 + 2θϕ+ θ2)

1− ϕ2
, γ(1) =

σ2(1 + θϕ)(ϕ+ θ)

1− ϕ2
, γ(h) = ϕh−1γ(1) (h ≥ 1)

▶ Autocorrélations :

ρ1 =
(1 + θϕ)(ϕ+ θ)

1 + 2θϕ+ θ2
, ρh = ϕh−1ρ1 pour h ≥ 1

▶ La FAC commence à ρ1 (qui dépend à la fois de ϕ et θ) puis décroît
exponentiellement au taux ϕ.
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Effet des filtres linéaires sur la FGACV

▶ Soit Yt = ψ(L)Xt =
∑∞

j=−∞ ψjXt−j une version filtrée de Xt. La FGACV du
processus filtré est :

gY (z) = ψ(z)ψ(z−1)gX(z)

▶ Démonstration : puisque Yt = ψ(L)Xt, nous avons :

Yt = ψ(L)

[
Θ(L)

Φ(L)
εt

]
=
ψ(L)Θ(L)

Φ(L)
εt

L’application de la formule de la FGACV à cette nouvelle représentation MA(∞)
donne le résultat.
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Exemple : filtre de différence première
▶ Considérons la différence première ∇Xt = Xt −Xt−1 = (1− L)Xt. Ici
ψ(z) = 1− z, donc :

ψ(z)ψ(z−1) = (1− z)(1− z−1) = 2− z − z−1

▶ Si Xt est un AR(1) avec gX(z) =
σ2

(1− ϕz)(1− ϕz−1)
:

g∇X(z) =
σ2(2− z − z−1)

(1− ϕz)(1− ϕz−1)

▶ En z = 1 : g∇X(1) = 0. La série différenciée a une « variance de long terme »
nulle, ce qui est cohérent avec une sur-différenciation d’un processus stationnaire.
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Sommes partielles et variance de long terme

▶ Soit Sn = X1 +X2 + · · ·+Xn la somme partielle. La variance est :

V(Sn) =
n∑

t=1

n∑
s=1

γ(t− s) =

n−1∑
h=−(n−1)

(n− |h|)γ(h)

▶ Pour n grand :
V(Sn)
n

→ gX(1) = 2πfX(0)

▶ C’est la variance de long terme ou densité spectrale à la fréquence zéro.
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Variance de long terme pour les processus ARMA
▶ Pour un processus ARMA(p, q) :

lim
n→∞

V(Sn)
n

= gX(1) = σ2
Θ(1)2

Φ(1)2
= σ2

(1 + θ1 + · · ·+ θq)
2

(1− ϕ1 − · · · − ϕp)2

▶ Exemples :

▶ AR(1) : gX(1) =
σ2

(1− ϕ)2

▶ MA(1) : gX(1) = σ2(1 + θ)2

▶ ARMA(1,1) : gX(1) = σ2 (1 + θ)2

(1− ϕ)2

▶ Si Φ(1) = 0 (racine unitaire), la variance de long terme est infinie, signalant une
non-stationnarité.
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Problème de factorisation spectrale

▶ Étant donné une FGACV gX(z), trouver une représentation MA(∞)

Xt = ψ(L)εt

telle que gX(z) = σ2ψ(z)ψ(z−1).

▶ Factorisation canonique : on cherche ψ(z) avec :
1. toutes les racines de ψ(z) à l’extérieur du cercle unité (inversibilité)

2. ψ(0) = 1 (normalisation)

▶ La FGACV fournit la « matière première » ; la factorisation spectrale extrait le
filtre causal.
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Exemple de factorisation
▶ Considérons la FGACV :

gX(z) = σ2
(1 + 0,5z)(1 + 0,5z−1)

(1− 0,8z)(1− 0,8z−1)

▶ Numérateur : Θ(z) = 1 + 0,5z a une racine en z = −2 (hors du cercle unité).

▶ Dénominateur : Φ(z) = 1− 0,8z a une racine en z = 1,25 (hors du cercle unité).

▶ La représentation canonique est :

(1− 0,8L)Xt = (1 + 0,5L)εt

C’est un processus ARMA(1,1) inversible avec ϕ = 0,8 et θ = 0,5.
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Cas non inversible

▶ Considérons le processus MA(1) avec θ = 2 (non inversible) :

Xt = εt + 2εt−1

FGACV : gX(z) = σ2(1 + 2z)(1 + 2z−1) = σ2(2z−1 + 5 + 2z).

▶ En réarrangeant : (1 + 2z)(1 + 2z−1) = 4 · (1 + 0,5z)(1 + 0,5z−1), d’où
gX(z) = (2σ)2(1 + 0,5z)(1 + 0,5z−1).

▶ Représentation inversible :

Xt = ηt + 0,5ηt−1, ηt ∼ BB(0, 4σ2)

Les deux représentations ont la même FGACV (donc les mêmes propriétés du
second ordre).
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Résumé : résultats principaux

1. Définition de la FGACV : gX(z) =
∑∞

h=−∞ γ(h)zh

2. Formule ARMA : gX(z) = σ2
Θ(z)Θ(z−1)

Φ(z)Φ(z−1)

3. Extraction des autocovariances : développer en série de Laurent, lire les coefficients
de zh

4. Filtrage linéaire : gY (z) = ψ(z)ψ(z−1)gX(z)

5. Variance de long terme : limn→∞V(Sn)/n = gX(1)

6. Densité spectrale : fX(ω) =
1

2π
gX(e−iω)
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Résumé : démarche pratique

Pour trouver les autocovariances d’un processus ARMA(p, q) :
1. Écrire Φ(z) et Θ(z)

2. Calculer gX(z) = σ2
Θ(z)Θ(z−1)

Φ(z)Φ(z−1)

3. Développer en série de Laurent en utilisant :
▶ la multiplication directe pour les processus MA

▶ les séries géométriques pour les processus AR

4. Lire γ(h) comme coefficient de zh

5. Vérifier avec les équations de Yule-Walker si nécessaire
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Tableau récapitulatif

MA(q) AR(p) ARMA(p,q)
Stationnarité Toujours Racines > 1 Racines AR > 1

Inversibilité Racines > 1 Toujours Racines MA > 1

γ(h) = 0 pour h > q Jamais Jamais
Décroissance Coupure Géométrique Géométrique
de γ(h) nette (après h > q)

Pour un ARMA(p,q), la dynamique de retour à zéro de l’autocovariance est gouvernée
par la partie AR pour h > q.
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Résumé général

▶ MA(q) : autocorrélation nulle au-delà du rang q, toujours stationnaire.

▶ AR(p) : autocorrélation non nulle à tout ordre, décroissance géométrique.
▶ Stationnaire si racines du polynôme retard > 1 en module

▶ Pour p ≥ 3 : pas de condition explicite simple
▶ ARMA(p,q) : combine les deux structures.

▶ Stationnarité : condition sur la partie AR

▶ Inversibilité : condition sur la partie MA

▶ Espérance : ne dépend que de la partie AR

▶ Autocovariance : système de Yule-Walker étendu

▶ La marche aléatoire (φ = 1) : processus I(1), non stationnaire.
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