Modéles ARMA

Séries Temporelles
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Les modéles ARMA

» Dans ce chapitre, nous allons considérer une large classe de modéles linéaires qui
permettent de construire des processus stochastiques a partir d'un bruit blanc
(e1,t € Z) ~ BB(0,0?).

» ARMA = AR + MA :
> AR : Auto-Régressif (Auto-Regressive)
> MA : Moyenne Mobile (Moving Average)

» Ces modeéles permettent de capturer différentes structures de dépendance
temporelle de maniéres plus ou moins parcimonieuses.
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Plan

Le modéle Moyenne Mobile (MA)
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Le modéle MA(1)

» Définition : Soit (g,,¢ € Z) un bruit blanc de variance o2 et d’espérance nulle. On
définit le processus MA(1) (Y;,t € Z) par :

Y =e4 — 041

ol f est une constante réelle.
» Le processus Y; est une combinaison linéaire des innovations ¢ a différentes dates.

» Caractérisons ce processus en calculant ses moments d'ordre 1 et 2.
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Espérance du MA(1)

» Calcul de I'espérance :

E[Y:] = Eler — fet—1]
Ele:] — 0E[er—1] (linéarité de |'espérance)
=0—-6-0
0

» L'espérance du processus MA(1) est nulle pour tout ¢.
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Variance du MA(1)

» Calcul de la variance :

— 20e441 + 077 4]
| —20 Eleier 1] +0°E[eZ ]

—_————
=0 (bruit blanc)

N RN

=%+ 6°%0°

= (1 +6%)0?

» La variance est constante et ne dépend pas de ¢.
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Fonction d'autocovariance du MA(1) (1/2)

» Calcul de (1) :

v(1) = E[Y3Y;—4]
E[( 96,5 1)(6t 1 — 957& 2)]
E[Et€t 1] — QE[EtEt 2] — QE[ ] + 92E[Et_1€t_2]

» Les termes Eleies—1], Elerer—2] et E[e;—164—2] sont nuls (bruit blanc).

» Donc :
v(1) = —6E[e_,] = —60°
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Fonction d'autocovariance du MA(1) (2/2)

» Calcul de v(h) pour |h| > 2 : Pour |h| > 2, les produits Y; et Y;_;, n'ont aucune
innovation € en commun :

7(h) = El(e — be0-1)(er—n — be—p1)] = 0

> Résumé :
(14+6%)0% sih=0
v(h) = —00? si|h| =1
0 si |h| > 2

» La fonction d'autocovariance est nulle au-dela du rang 1.
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Fonction d'autocorrélation du MA(1)

» La fonction d'autocorrélation est :

1 sih=0
v(h) — .
h = — = — pr—
0 si |h| > 2

» Propriété importante : On peut vérifier que [p(1)| < % pour tout # € R.

En effet, en étudiant la fonction f(0) = %, on montre que son maximum est 5
(atteint en § = —1) et son minimum est —1 (atteint en 6 = 1).
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DO

Démonstration : [p(1)]| <

Soit f(0) = i Calculons les extrema.
L+ 9 0=—11p(1)
f’(e)—_(1+92)+9'29— N R e
B (1+062)2 (14 6%)2

> F(0) =00 ==+l g

> f(-1) :% (maximum) -4 -2 2 4

> f(1) = 1 (minimum) 05N .

2 =1
> limg 400 f(a) =0
1

Donc —3 <p(1) < % pour tout 0 € R.
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Processus MA(1) non centré

» Définition : On peut ajouter une constante dans la définition :
Yi=p+e— 0

» Cela n'affecte que |'espérance, pas les moments d'ordre 2 puisque nous ne faisons
que rajouter une constante (déterministe):

> V[Y;] = (1 +6%)0? (inchangge)
» ~(h) inchangée pour h # 0

» Stationnarité : Le processus MA(1) est toujours stationnaire, quelle que soit la
valeur de 6.
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Probleme d'identification du MA(1)

» Observation : Si 6 = q, alors p(1) = %.
—1/a —1/a —a

1
Sifg=—,al 1) = = = :
| a 20" p(1) 1+1/a®>  (a?+41)/a®> 1+ a?

» Autrement dit, pour § = a et § = 1/a, le processus a les mémes propriétés en
termes de dépendance !

» = Cela pose un probléme d’identification : on ne peut pas distinguer ces deux
modéles a partir des données.

» Convention d’inversibilité : Pour résoudre ce probléme d'équivalence
observationnelle, on impose 0| < 1.
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Structure de dépendance du MA(1)

» Remarque : La structure de dépendance du MA(1) est trés limitée :
> Y, est corrélé avec Y;_; (covariance non nulle)
> Y, n'est pas corrélé avec Y;_j pour |h| > 2
» L'autocorrélation non nulle a I'ordre 1 apparait car deux Y consécutifs ont une
innovation € en commun. Les couples de variables Y plus éloignées dans le temps
ne partagent aucun e.
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Densité spectrale du MA(1)

» Rappel : Pour un processus stationnaire, la densité spectrale est la transformée de
Fourier de la fonction d'autocovariance :

» Puisque y(h) =0 pour |h| > 2, 0on a:

fw)

[Y(=D)e™ +7(0) + y(1)e*]

[_Heiw 4 (1 + 02) o Hefiw]

RN

1+ 62 — 26 cos(w)]
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Densité spectrale du MA(1) : représentation graphique

™

Jr
3
\—9:0.9—9:0.5—9:—0.5—9:—0.9---9:0

6 > 0 : énergie concentrée aux hautes fréquences (w ~ ). 6 < 0 : énergie concentrée aux
basses fréquences (w =~ 0).
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Le modéle MA(2)

» Définition : Soit (g¢,¢ € Z) un bruit blanc de variance 2. On définit le processus
MA(2) (Y:,t € Z) par :
Yi =&t —O164—1 — bher—o

» On enrichit la structure d'autocorrélation en rajoutant des retards sur les
innovations €.

» Remarque : On pourrait ajouter une constante p ; cela n'affecterait que
I'espérance, comme dans le cas du MA(1).
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Espérance et variance du MA(2)

> Espérance :
E[Y;] = E[Et — 01€t_1 — 92875_2] =0

» Variance :

V[Y:] = E[(e¢ — 01641 — fag1—2)7]
=Rl + 02e2 | + 0367 5 — 20160641 — 20964642 + 2016064 16¢_o]

» Les termes croisés sont nuls (bruit blanc), donc :

V[Yy] = Elef] + 07E[f ] + 63E[e} o] = (1 + 6% + 63)0”
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Autocovariance d'ordre 1 du MA(2)

> Calcul de (1) :

7(1) = E[YY ]

= E[(er — O1e¢—1 — O2e1—2)(et—1 — O16t—2 — O2e4_3)]

» Seuls les produits d'innovations de méme date sont non nuls :
> —Oiei1 -1 = —bie]
> —Oreio - (—0164—2) = b10267

» Donc :
v(1) = =1 E[e]_1] + 0162E[e7 ] = (—01 + 0162)0”
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Autocovariance d'ordre 2 du MA(2)

» Calcul de v(2) :

v(2) = E[Y;Y:—2]

=E[(e; — b1et—1 — baer—2)(et—2 — b1et—3 — bagr—4)]
» Seul le produit —fse;_9 - £;_o est non nul :
1(2) = ~02E[e}_y] = —b20”
» Pour |h| >3 : Il n'y a plus d'innovations communes entre Y; et Y;_j, donc :

v(h) =0 pour |h| >3
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Résumé pour le MA(2)

» Fonction d’autocovariance :

(1+62+63)0% sih=0
(—91 + 9192)0’2 si |h’ =1

h —
’7( ) —(920’2 Si ’h’ =2
0 si|h| >3
» Fonction d’autocorrélation :
—01 + 6105 —05 .
1) = N= — = h)=0 h| >3
p(1) T+ 0 p(2) T+ p(h) = 0si[h| >

» = La fonction d'autocovariance d'un MA(2) est nulle au-dela du rang 2.

» = Le processus est stationnaire pour toute valeur de (61, 62).
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Autocorrélations du MA(2) :

Autocorrélation d'ordre 1

p(1)

—01 + 0162

1162163
T T T

»n

représentation graphique

Autocorrélation d’ordre 2

Triangle d'inversibilité : 5 > —1, 61 + 605 < 1, 05 — 0, < 1.
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Densité spectrale du MA(2)
» Calcul : Pour le MA(2), Y; = &4 — 0164—1 — ba54_2, Oon a :

2
o — 9w 12
flw) = o |1 — 61 — bae 2""‘
» En développant le module au carré :

‘1 — Ore” — 926_2iw’2 =14 6% + 62 — 20, cos(w) + 261605 cos(w) — 26, cos(2w)
= 14602 403 +20,(02 — 1) cos(w) — 2605 cos(2w)

» Densité spectrale du MA(2) :

2
Flw) = ;’7 [1+4 62 + 62 + 26, (62 — 1) cos(w) — 265 cos(2w)]
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Densité spectrale du MA(2) : représentation graphique

— 91 = 0.5; 92 =03 — 91 = —0.5; 92 =0.3— 91 = 0.8; 92 =—-0.5
—61:—0.8; 92 —0.5--- 91:92:0

Le paramétre 05 contréle la composante en cos(2w), introduisant des oscillations plus rapides
dans le spectre.
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Le modéle MA(q)

» Définition : Soit (e¢,¢ € Z) un bruit blanc de variance 2. On définit le processus
MA(q) (Yz,t € Z) par :

Yi =¢e+0164—1 +bacp—o + -+ O4e1—4

» Remarque sur la paramétrisation : On a changé le signe des coefficients par
rapport au MA(1) et MA(2). Ce choix de paramétrisation affecte I'expression de la
fonction d'autocovariance mais pas les propriétés fondamentales du modéle.

» On pourrait ajouter une constante p ou un autre terme déterministe ; cela
n’affecterait que |'espérance.
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Moments du MA(q)

» Espérance :
E[Y;] =0

» Variance :

VY;] = E [(e¢ + Ore—1 + - + O461-4)%]
= E[ef] + 07E[e7_1] + - - - + 6.E[e7_]

> Les termes croisés 6;0;c;_;e—; pour i # j sont nuls en espérance.

>

VY] = (1467 +65+ - +062)0°
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Fonction d'autocovariance du MA(q) (1/2)

» Calcul de y(h) :

v(h) = E[Y;Y;—p]
q q
=E (Z 6i£t—i> Z ejEt,h,j
i=0 7=0

avec la convention 6y = 1.

» En développant :
a q

v(h) = Z Z HiejE[Et—igtfhfj]

i=0 j=0

> Le terme E[e;—;e4—p—j] est nul sauf sit —i =t —h — j, c'est-a-dire si j =i — h.
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Fonction d'autocovariance du MA(q) (2/2)

» En posant j =i — h et en éliminant les termes nuls :

q
y(h) =0 60:6;
i=h

avec la convention g =1 et 8, =0 pour i < 0Ooui >gq.

» Propriété fondamentale :
v(h) =0 pour |k > q

La fonction d'autocovariance d'un MA(q) est nulle au-dela du rang g¢.

» = Le processus MA(q) est toujours stationnaire pour toute valeur des
paramétres (01,...,0,).
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Limitation du modéle MA

» Pour obtenir une persistance « longue » au sens ot Y; et Y;_, sont corrélés pour
de grandes valeurs de h, il faut rajouter de nombreux retards dans le modéle MA.

> A I'extréme, si on souhaite que Y; soit corrélé avec tout son passé, il faut avoir un
nombre infini de retards sur |'innovation !

» Conclusion : Le modéle MA n'est pas trés parcimonieux pour modéliser des
processus avec une persistance longue.
= On va introduire le modéle autorégressif (AR) qui permet de capturer une
persistance longue avec peu de paramétres.
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Le modeéle MA(o0)

» Définition : Soit (g¢,¢ € Z) un bruit blanc de variance 2. On définit le processus

MA(o0) (Yi,t € Z) par :

o
Yi=p+ Z Oicr—
=0

avec 0y = 1 et (6;);>0 une suite absolument sommable :

o
> 16i] < o0
1=0

» L'espérance de ce processus est E[Y;] = p.
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Variance du MA(0)

» Calcul de la variance :

o0 2 [e.e]
VIV =E | (D biess | | =E|> 077,
=0 =0

SR ) -t 3
=0 =0

» La variance est finie car si les 6; sont absolument sommables, alors la somme des
carrés est aussi finie :

o0 o0
Z 0;| <00 = Z@? < 00
i=0 =0

> Eneffet: 350,07 < (322, 16:])* < oo
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Fonction d'autocovariance du MA(o0)
» Calcul de y(h) :

’y(h) =E (Z 9i5t—i> Z Gjet_h_j
1=0 7=0
= QiejE[Et_ié‘t,h,j]
=0 7=0

» Le terme E[e;—_je—p,—j] est non nul seulement si ¢ = h + j, donc :

y(h) = 0> 6ibirn
i=0

» Propriété : La fonction d'autocovariance (et donc d'autocorrélation) est non
nulle pour tout h.
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Plan

Le modéle Autorégressif (AR)
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Le modéle AR(1)

» Définition : Soit (g4, € Z) un bruit blanc de variance o2. Le processus (Y;,t € Z)
est autorégressif d'ordre 1 s'il est défini par la récurrence stochastique :

Yi=¢Yi 1 +e

» On suppose que &; est indépendant du passé de Y : c'est une innovation.
» On suppose |p| < 1 (condition de stationnarité).

» Calculons les moments d'ordre 1 et 2 de ce processus sous |I’hypothése de
stationnarité.
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Espérance du AR(1)

» Calcul de I'espérance :

E[Y;] = E[pY; 1 + &
= @E[Y; 1] + E[e¢]
= pE[Y;-1]

» Sous I'hypothése de stationnarité, E[Y;] = E[Y;_1] = p pour tout ¢.

» Donc :

» Pour ¢ # 1, la seule solution est :
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Variance du AR(1)

» Calcul de la variance :
VIY;] = V]pYi1 + &)

» Comme &; est indépendant du passé de Y3, on peut « casser » la variance :
VY] = V[pYi1] + V[er] = *V[YVi1] + 0°
» Sous |'hypothése de stationnarité, V[Y;] = V[Y;_1] = ~(0) :
7(0) = ¢*4(0) + o

» D'ou :

7(0) = V[Yi] =
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Remarques sur la variance du AR(1)

>

0.2

L=
» La volatilité de (Y;,t € Z) est d'autant plus importante que :

VY] = 5

» La variance de l'innovation o2 est grande

> Le paramétre autorégressif o est proche de 1 ou —1

> Attention :

> La variance n'est pas définie pour || =1
> Elle devient méme négative pour || > 1 (ce qui est absurde)

= Cela justifie la condition |¢| < 1.
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Fonction d'autocovariance du AR(1) (1/2)

» Calcul de «(h) : Partons de la définition :
YiYin = ¢Yi1Yiop +eYip
» En prenant I'espérance :
ElY;Yi—n] = E[Y; 1Y, _p] + Ele:Y;_p)

» Pour h > 1, on a E[g;Y;_p] = 0 car &; est indépendant du passé de Y.

» Par définition de la fonction d'autocovariance obéit a la récurrence d'ordre 1
suivante :

v(h) = py(h - 1)
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Fonction d'autocovariance du AR(1) (2/2)

» La fonction d'autocovariance vérifie la récurrence :

(k) = @y(h—1)

» avec v(0) = Cette équation récurrente est stable car |p| < 1.

1— 2

» En résolvant cette récurrence :

(h) =" Gl (0)
W)=t s =
» La fonction d'autocorrélation est donc :
v(h) h
() 7(0)
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Interprétation du parameétre autorégressif

_ . h
p(h) = ¢

> Remarques :

> La fonction d'autocorrélation est non nulle a tout ordre

> Elle est décroissante (en valeur absolue) vers 0

> La vitesse de décroissance dépend de |y|
» Interprétation : Le paramétre autorégressif ¢ s'interpréte comme un paramétre

de persistance :
» Plus || est proche de 1, plus lentement p(h) converge vers 0
» Plus || est proche de 0, plus rapidement la mémoire du processus s'estompe
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Fonction d'autocorrélation du AR(1) : représentation graphique

1o=—— T
\\\ “~'~~‘
\\ .~‘~.~~..-
05 = -l
N —_.___.__
Q& *.\\ '.-—-..___.___.___
~o-__
I 0 ¢--¢--0-9¢--0o--0--0--0--0--0--0--
= °
=Y . ° g
—05F e °
[ )
[ ]
®
-1 \ | | | | | | | | |

| I I R
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

h
0p=0.9--- o =050p = —0.5--- p = 0.9

@ > 0 : décroissance monotone. ¢ < 0 : décroissance oscillatoire.

@@ el8cd8d — 42/150 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Densité spectrale du AR(1)

» Calcul : Pour le AR(1), Y; = ¢Y;_1 + &, 0na:

o? 1

flw) = o 4|1 _ (pe,iw|2
» En développant le module au carré :
11— @e‘i“’f = (1 — e ™)(1 — pe™) = 1 + ¢* — 2p cos(w)
» Densité spectrale du AR(1) :
o2 1

T or 14 p2 —2¢pcos(w)’

fw)

w € [0,7]
» Remarque : Comparer avec la densité spectrale du MA(1) :

2
o
fMA(l)(w) =5 (1 +6%—20 Cos(w))

Le AR(1) et le MA(1) ont des spectres inverses |'un de |'autre.
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Densité spectrale du AR(1) : représentation graphique

f(w) - 27/0?

@ > 0 : énergie aux basses frequences. ¢ < 0 : énergie aux hautes fréquences.
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AR(1) avec constante

» Exercice : Calculer les moments d'ordre 1 et 2 du processus :
Yi=c+ Y1 +¢e

avec (g¢,t € Z) ~ BB(0,0?) et |¢| < 1, sous I'hypothése de stationnarité.

» Espérance :

C
EYi]=c+¢E[Yi1] = p=ctop = Al

» Variance et autocovariance : inchangées (la constante n'affecte pas les
moments centrés d'ordre 2).
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Intuition sur la persistance

» Question : Plus ¢ se rapproche de 1, plus Y; devient dépendant de son passé.
Que se passe-t-il dans le cas limite ¢ =1 7

» Pour répondre a cette question, nous allons recalculer les moments sans recourir
a I'hypothése de stationnarité.

» Nous allons voir que :
» Si |p| < 1, le processus converge vers une distribution stationnaire

» Sip =1, le processus n"admet pas de distribution stationnaire
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Condition initiale et solution explicite

» Supposons qu'il existe une condition initiale Yj : une variable aléatoire

' P . 2
d'espérance p et de variance .

» On peut exprimer Y; en fonction de Yj et des innovations entre 0 et ¢.

» En effet, par itération de la récurrence Y; = ©Y;_1 + ¢ :

Yi =Y 1+e
=p(eYiote1)+e =i+t g1+e
= Y3+ %er o+ el + &
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Solution explicite de I'AR(1)

» En itérant jusqu'a la condition initiale Y, on obtient :

t—1

V=o' Yo+ Y ola
=0

» On peut vérifier que cette expression est correcte en la substituant dans
I'expression récursive du processus AR(1).

> |l s'agit de la solution de I'équation récurrente stochastique.

» On peut utiliser cette expression pour calculer les moments de I'AR(1) sans
supposer la stationnariteé.
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Espérance sans hypothése de stationnarité

» Calcul de I'espérance :

t—1
EYi| =E [¢'Yo+ ) (Pigt—i]
. tl—zlo A
= ¢'E[Yo] + ; v @\EE%A
= @tﬂo

» Observation : L'espérance dépend du temps ¢, sauf si I'espérance de la
condition initiale est nulle (1o = 0).
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Variance sans hypothése de stationnarité

» Calcul de la variance :

t—1
VY] =V [V + > szgt—i]
i=0
=1
= P"V[Yo] + > " Ve ]
i=0
=1
= o2 +Uzz<pzl
i=0
1— S0275
2t 2 | 2
= 7o +o0° -
o2
> Observation : La variance dépend du temps t... sauf si of = [
-

@@ el8cd8d — 50/150 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Condition de stationnarité

» Proposition : Si |p| < 1, le processus stochastique Y; = ¢Y;_1 + &; avec
g; ~ BB(0,0?) et condition initiale Y est stationnaire au second ordre si et

seulement si :
o2

=0 et o0f=-——

lu’O 0 1 - @2
» Pour que le processus soit stationnaire au second ordre, il faut et il suffit que les
moments de la condition initiale soient identiques aux moments stationnaires

que nous avions calculés précédemment.
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Interprétation : dynamique d'une distribution (1/2)

» |l faut bien comprendre la nature de |'équation :
Yi=0Y 1 +e

» Une récurrence stochastique définit |'évolution dans le temps d'une distribution.

» Pour mieux comprendre, supposons que &; soit un bruit blanc gaussien et que la
condition initiale soit normalement distribuée :

gt~ N(0a02)7 Yb ~ N(/'L()?O-(Q))

» Puisque le modéle est linéaire, Y; sera normalement distribué pour tout ¢ (une
combinaison linéaire de variables normales est normale).
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Interprétation : dynamique d'une distribution (2/2)

» A chaque période, la distribution de Y; évolue :

Y1 ~ N (epo, 905 + 0?)
Yo ~ N (o, pog + (1 + ¢?)o?)

» En général, a chaque période :

= -1, 0 =¢’cp | +0°

» Observation : L'espérance y; et la variance o7 changent a chaque période !
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Convergence vers la distribution stationnaire

» Puisque |p| < 1, on peut itérer indéfiniment. Asymptotiquement, Y; est
normalement distribué : B
2
Yy —— Npioo, 05)
t—o0
avec :
2

_ 1 t, 2 _ 1 2_ O
Hoo = lim @'pio =0, Uoo_tlggogt_l_(pz

> Y, tend vers une distribution bien définie. Les moments asymptotiques fioo et 02, :
» Ne dépendent pas de la distribution de la condition initiale

» Correspondent précisément aux moments calculés sous I'hypothése de stationnarité
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Distribution stationnaire comme point fixe

» La récurrence stochastique Y; = ©Y; 1 + ¢; décrit la dynamique d’'une
distribution.

» Pour toute condition initiale Yj, la dynamique converge vers une distribution
2

normale d'espérance nulle et de variance

_(p2'

2
_— . o : B} .
» Point fixe : La loi /V <0, 12) est |'attracteur de la récurrence stochastique.
-
C'est un point fixe dans |'espace des distributions : si Yj a cette distribution, alors
la distribution est invariante pour tout t.
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Stationnarité asymptotique

» Définition : Un processus stochastique est asymptotiquement stationnaire au
second ordre s'il existe une distribution limite (quand ¢t — oo) dont les moments
d'ordre 1 et 2 sont finis et constants.

> Astuce pratique : Utiliser la distribution asymptotique pour définir la condition
initiale !

» Pour que le modéle AR(1) soit asymptotiquement stationnaire au second ordre, il
faut et il suffit que |¢| < 1.

> En effet, la dynamique de la distribution est caractérisée par le systéme :
2 2 2 2
Pt = $pi—1, 0y =¢°0_1+0

Ce systéme est globalement stable si et seulement si || < 1.
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Condition de stabilité et polynéme retard
» On dit que |¢| < 1 est une condition de stabilité de I'AR(1).

> Réécriture avec le polynéme retard :
Yi—¢Yi1=¢ & (1-¢pL)Y,=¢
ot (L) =1— L.

» La condition de stabilité peut s'exprimer comme une restriction sur la racine du
polynéme retard :

1
P(z)=0 & 1—pz=0 & z=-—
2
» Le processus est stable si la racine du polynéme retard est supérieure a 1 en

module :

1
H>1 & el <1
12
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Représentation MA(oo) de I'AR(1)

» Sous la condition |¢| < 1, on peut inverser le polynéme retard (voir chapitre
précédent) et obtenir la représentation MA(0) :

o0
Y, =®(L) ey = (1 — L) ey = Z et
=0
> On retrouve cette expression en itérant vers le passé :
s—1
Yi=@Yio+ Y oler
=0

» Quand s — oo, le terme Y, — 0 (car |¢| < 1) et :

m .
Y, = Z P'Er—;
i—0

» On obtient directement les moments de la distribution stationnaire.
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Propriété du modéle AR(1) si ¢ =1

» Sip =1 (ou —1), nous savons que nous ne pouvons pas inverser le polynéme
retard.

» En pratique, cela signifie : il n'est pas possible de représenter le processus sous la
forme d'un MA(c0), et le processus n'admet pas de distribution stationnaire.

» Supposons que la condition initiale Yy soit une variable aléatoire d'espérance g et

de variance 0(2).

» On montre facilement par récurrence arriére que :

t
i=Yo+) &
i=1
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Moments de la marche aléatoire

> Pour Y; = Yy + 3.¢_, &, calculons les moments :

> Espérance :
¢

E[Y] = o + Y Elei] = o

» Variance :
t

V[Yi] = V[Yo] + ) Viei] = 0 + to”
i=1
» Observation : L'espérance est constante, mais la variance croit linéairement
avec le temps !
= Le processus stochastique est donc non stationnaire.
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Tendance stochastique

» Contrairement au cas || < 1, la variance ne cesse jamais de croitre.
» On parle alors de tendance stochastique.

» |l n'est donc pas possible de définir une distribution stationnaire, puisque la
variance augmente indéfiniment.

» Définition : Marche aléatoire : Un processus de la forme :
Yi=Y 1+

est appelé une marche aléatoire (random walk).
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Processus intégré d'ordre 1

» Notons que si la variance de Y; n'est pas définie (elle diverge), celle de AY; est
bien définie :
AY; =Y; — Yi_1 =& ~ BB(0,0?)

» Le processus différencié est un bruit blanc, a fortiori stationnaire au second ordre.

> Définition : Processus intégré : Un processus non stationnaire qui peut étre
rendu stationnaire en le différenciant, c'est-a-dire en appliquant |'opérateur
différence premiére, est dit intégré d'ordre 1 (on note I(1)).

» La marche aléatoire est le cas le plus simple de processus I(1).
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Le cas || > 1

» Probléme : Si || > 1, la dynamique est explosive : la variance diverge
exponentiellement.

» De plus, la représentation n'est pas causale. L'inversion du polynéme retard (qui
est possible avec |p| > 1 mais dans |'autre sens) nous dit que Y; n'est plus
fonction des ¢ passés mais des ¢ futurs.

» Voir la fin du chapitre précédent sur I'inversion des polyndmes retard.
» Remarque : Un modéle MA est toujours causal (par construction, Y; ne dépend

que des ¢ passés et présents).
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Construction de I'AR(2) par composition

» On peut considérer un modéle avec deux retards sur |'endogéne. On peut créer un
processus AR(2) en composant deux processus AR(1).

» Soit le processus (Xy,t € Z) défini par :
X =MXp—1+ &

avec [\1]| < 1 et er ~ BB(0,0?).

» On construit le processus (Y;,t € Z) comme :
Yi= Y1+ Xy
avec |A\a] < 1.
» Le processus Y; dépend donc de Y;_ 1 et, indirectement via Xy, de Y;_o.

Remarque : (X;) n'est pas l'innovation de (Y;).
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Dérivation de I'AR(2) par composition

» En utilisant les polynémes retard :
(1 — )\1L)Xt = &t (*), (1 — )\QL)Y; = Xt (**)
» En substituant (x) dans (xx) :

(1—XL)Y;=(1—-M\L) g
& (1-=ML)(1=XL)Y,=¢
& (1= 14+ 2L+ M LY, =«
> Do :
Yi= M+ A2)Yio1 — MAeYio + &
P> avec 1 = A1 + g et 2 = —A1 .
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Définition générale de I'AR(2)
» Définition : (Y;,¢ € Z) est un processus AR(2) si :
Yi=pYio1 + Yo+ et

avec (g4, t € Z) ~ BB(0,0?).

» Ce processus est stable (asymptotiquement stationnaire au second ordre et causal)
si les racines du polynéme retard :

®(L)=1— 1L — o L?

sont supérieures a 1 en module.

» Remarque : Les racines du polynéme retard peuvent étre complexes conjuguées,
méme si le processus stochastique est a valeurs réelles = composante cyclique.
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Polynéme retard vs polynébme caractéristique

» Jusqu'ici nous avons discuté la stabilité en fonction des racines du polyndme
retard. On peut aussi utiliser le polynéme caractéristique (habituel en systémes
dynamiques).

» Pour le modéle AR(2), le polynéme caractéristique est :

X(A) = A2 — 1) — ¢y

» Si zéro n'est pas une racine (ce qui arriverait si 2 = 0, mais alors ce ne serait pas
un AR(2)), il existe une relation inverse entre les racines :

1 1 1
X(A) = A? (1 %1y @2/\2> =\ (/\)

1 .
» Ainsi A* est racine de x(\) si et seulement si > est racine de ®(z).
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Condition de stabilité équivalente

» Condition de stabilité : La condition de stationnarité asymptotique au second
ordre est équivalente a :
> Les racines du polynéme retard ®(z) = 1 — 12 — 22 sont > 1 en module
ou de facon équivalente :
> Les racines du polynéme caractéristique y(\) = A2 — o1\ — ¢ sont < 1 en
module (3 l'intérieur du cercle unité)
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Conditions de stabilité de I'AR(2) (1/3)

» Question : Quelles sont les conditions sur 71 et o pour que le modéle soit stable

?

» |l faut que les racines du polyndme caractéristique x(\) = A? — o1\ — 9 soient
< 1 en module.

> Le discriminant est A = ¢? + 4.

2
> Cas complexe : Si A < 0 (c’est-a-dire py < —%L), les racines sont complexes

conjuguées :
—-A
2 2
¥ —A
» Le module est |\*| =1/ + == = /—¢o.

» Pour la stabilité : |\*| < 1 @.
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Conditions de stabilité de I'AR(2) (2/3)

[

» Cas réel : Si A > 0 (c'est-a-dire g > —%), les racines sont réelles :
p1+ VA 1 — VA
M= =

» Condition sur la plus grande racine \; : \; <1 & o +VA<2 &
\/Z <2 -

» Si ¢ > 2, cette condition n'est jamais satisfaite = non stationnaire.

» Si 1 < 2, en élevant au carré : A < (2 — ¢1)?

Pitder <d—dpiti &
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Conditions de stabilité de I'AR(2) (3/3)

» Condition sur la plus petite racine Ay : \g > -1 < o — VA > -2 &
\/Z < 1+ 2

» Si ¢ < —2, cette condition n'est jamais satisfaite = non stationnaire.

» Si ;> —2, en élevant au carré : A < (1 + 2)?

¢%+4902<<P%+4901+4 S e <14

» Résumeé : Conditions de stabilité de I'AR(2) :

po2 > —1
w2 <1—¢
w2 <141

@@ el8cd8d — 71/150 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Triangle de stabilité de I'AR(2)

> Les trois conditions définissent un triangle :

» ¢y > —1 : au-dessus de la droite horizontale ¢y = —1

» 9 < 1— 1 : en dessous de la droite passant par (0,1) et (1,0)
» ¢y < 1+ 7 : en dessous de la droite passant par (0,1) et (—1,0)
» Les sommets du triangle sont : (—2,—1), (2,—1) et (0,1).

» A l'intérieur de ce triangle : processus stable.

» A I'extérieur : processus instable (explosif ou avec racine unitaire).
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Triangle de stabilité (représentation graphique)

Racines complexes

(—2,-1) P2 # —1

» A > 0 (au-dessus de la parabole) : deux racines réelles distinctes

T oS

,—1
> )

» A < 0 (en dessous de la parabole) : deux racines complexes conjuguées

» A =0 (sur la parabole) : racine réelle double
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Moments de I'AR(2) : Espérance

» Calculons les moments du processus AR(2) :
Yi=ct+ oY1 +p2Yio+er

avec (g4,t € Z) ~ BB(0,0?), en supposant que ¢; et s satisfont les conditions
de stationnarité.

> Espérance :
E[Y)] = ¢+ ¢iE[Yi1] + p2E[Y; o]

» Sous stationnarité, E[Y;] = E[Y;_] = E[Y;—2] = 4, donc :

C

p=ctoippt oo = Mzm

@@ el8cd8d — 74/150 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Moments de I'AR(2) : Variance (difficulté)

» Calcul de la variance : On ne peut pas suivre la méme approche que pour
I'’AR(1). Par définition :

VY] = Vie+ o1Yi1 + 2Yio + &4
» Comme c est déterministe et £; est une innovation :
V[Vi] = Vip1Yio1 + p2Yi_o] + o°

» Probléeme : Y;_; et Y;_5 sont trés probablement corrélés. On ne peut pas
simplement « casser » la variance sans connaitre la covariance entre Y; 1 et Y; .
= |l n'est pas possible de calculer v(0) indépendamment de ~(1).
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Fonction d'autocovariance de I'AR(2) : processus centré

» Notons V; = Y; — 1 le processus centré. On peut montrer que :
Yy = o1Vi1 + p2Yioa + e

» C'est le méme processus mais sans constante.

» Démonstration :

Yi=c+v1Yi1+ @2Yio+ e
Yi=pu(l — @1 —w2) + 011+ @2V 2+ &
Vi —p=eo1(Yim1 — ) + p2(Yieo — 1) + &

» La fonction d'autocovariance de (Y;) est identique a celle du processus centré (Y;).
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Equations de Yule-Walker (1/2)

> Calculons v(h) = E[Y;Y;_).

» Pour h=0:

ED;;:Q] = E[(%Ytq + @2171572 + Et)i/;t]
Y(0) = p17(1) + ¢27(2) + E[e, Y]
A calcul

> OrY; = 1Y 1 + paYi_o + &, donc :

EleYy] = 91 EletYi—1] +p2 Ele,Yi—o] +E[e?] = o2
=0 =0

» Dot : |7(0) = ¢17(1) + p2y(2) + o’
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Equations de Yule-Walker (2/2)

» Pour h=1":
ViV = ¢1}7t{1 + @2}715—257%—1 + &Y
Y(1) = ©17(0) + 27(1) + 0
Y1
= 1) = 0
(1) =1 _w’y( )
» Pour h=2:

7(2) = p17(1) + 927(0)

» Pour h > 2 : La récurrence générale est :

[7(h) = ery(h = 1) + pay(h — 2) |
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Résolution du systeme de Yule-Walker

» Nous avons un systéme de 3 équations & 3 inconnues :

Y(0) = @17(1) + p27(2) + 0°

(1) = 017(0) + @ay(1)
7(2) = p17(1) + 92v(0)

» De la deuxiéme équation : (1) = 1 f1¢2’y(0)

» En substituant dans la troisiéme :

2 2 2

1 P+ P2 — 3
2) = 0) + 0)= —=~(0
v(2) 1_(@7( ) + ©27(0) 1— oo 7(0)

» En substituant dans la premiére et aprés simplification :

7(0) = (= ea)o

(14 @2)[(1 = 92)% — 7]
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Vérification et formules complétes

» On vérifie facilement que pour 9 = 0, cette formule redonne le résultat du modéle

AR(1) :
o2
7(0) = 1_ 4,0%
» Formules complétes :
_ (1 —p2)0”
O - - 7
o ®1 o (,0102
W= O = - e -

» Ensuite, la fonction d'autocovariance est définie récursivement :
v(h) = p1v(h —1) 4+ pay(h—2) pour h > 2
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Propriétés de |'autocovariance de I'AR(2)
» Remarque : Comme pour le modéle AR(1), la fonction d'autocovariance est non
nulle a tout ordre et converge vers 0 (si 1 et 2 sont tels que le modele est

stable).

» La fonction d'autocorrélation est :

» Elle vérifie aussi la récurrence :

p(h) = p1p(h — 1) + @ap(h —2) pour h >1

avec p(0) =1 et p(1) = . flm.
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Représentation MA(oo) de I'AR(2)
» Si le processus AR(2) est asymptotiquement stationnaire, alors il admet une
représentation MA(o0) :

[e.e]
Yi=p+Y e =p+y(L)e
=0
» Pour identifier 1)(L) et p, il « suffit » d'inverser le polynéme retard. L'AR(2)
s'écrit :
OL)Y;=c+e = Yi=0L) le+d(L) g
> Appliquer un opérateur retard a une constante ne change rien, donc
O(L)"te= (1) te
» Par identification : .
G R —r

(I'espérance de Y;, comme attendu).
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Calcul des coefficients v; (1/2)
» On doit avoir (L) = ®(L)™!, c'est-a-dire ®(L)y(L) =1 :
(1= 1L —@aL?) ) L’ =1
1=0

» En développant et regroupant par puissances de L :

e . i . 0 .
S Uil — o Y L — > L =1
i=0 i=0 i=0

> Soit :

o0

Z(wz — 1i—1 — 9021/11'_2)17 =1

=0

avec la convention ¢)_1 =¥ _o = 0.

@@ el8cd8d — 83/150 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Calcul des coefficients v; (2/2)

» Par identification des coefficients :

o =1
Pr—p1o =0 = Y=
Yo — 11 —patho =0 = by =+ ¢

> Récurrence générale :

Wz‘ = Q1¢i—1 + 2o pouri > 2

avec ¥g =1 et Y1 = 1.

» On peut résoudre ce systéme récursivement : la deuxiéme équation donne 1, la
troisiéme donne 1), etc.
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Résumé AR(2)

» L'AR(2) se définit par Yy = ¢1Yi—1 + p2Yi_o + &4
» Conditions de stabilité (triangle) :

p2>—-1, pa<l—gp1, p2<1l+¢
c
1—o1— 2
La variance et les autocovariances se calculent via les équations de Yule-Walker

L'espérance (avec constante c) est p =

La fonction d'autocovariance vérifie v(h) = @1v(h — 1) + woy(h — 2)

Sous stationnarité, I'AR(2) admet une représentation MA(c0)

vvyvy

Les racines complexes du polyndme caractéristique engendrent des cycles
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Définition de I'AR(p)

» Définition : Soit (¢;,t € Z) ~ BB(0,02). Le processus stochastique (Y3, € Z)
est un processus autorégressif d’ordre p si :

p
Y, = C+Z%’Ytﬂ' + &¢
i=1

avec ¢ et (¢;)!_; des paramétres réels.
> Le processus est asymptotiquement stationnaire au second ordre si :

> Les racines du polynéme retard ®(z) =1 — 12 — p22% — -+ — 2P sont > 1 en
module

» Ou de fagon équivalente : les racines du polynéme caractéristique
X(A) = AP — 1 AP~ — ... —p sont < 1 en module
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Remarque sur les conditions de stabilité

» Important : Il n'est plus possible d'obtenir de facon générale des restrictions
explicites sur les paramétres autorégressifs pour assurer la stabilité du processus
AR(p).

Il faut vérifier au cas par cas en calculant les racines du polynéme retard (ou du
polyndme caractéristique).

» Pour p =1 : condition simple |p1| < 1.
» Pour p = 2 : triangle de stationnarité (conditions explicites sur ¢ et @2).

» Pour p > 3 : pas de formule générale simple.
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Espérance de I'AR(p)

» Sous |'hypothése de stationnarité au second ordre, calculons I'espérance.

>
Yi=ct+o1Yia+@Yi o+ -+ Y p+ &

» En prenant |'espérance :
E[Y:] = c+ p1E[Y; 1] + @2aE[Y; 2] + - - + @pE[Y; ]
» Sous stationnarité, E[Y;] = u pour tout ¢, donc :
P
p=ctpipt ot opp=ctpy ¢
i=1

> Dol :

_ C
l—p1—p2—--—p

7
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Autocovariance de I'AR(p) : processus centré
» Centrons le processus en définissant Y, =Y, — 1. On montre que :
Vi=o1Yia+paYio+- -+ oY+

> L'autocovariance d'ordre h est y(h) = E[Y;Y;_4].
» Pour tout h >0 :

ViV =YY+ + @pﬁfpﬁ—h +eYiy
» En prenant I'espérance :

v(h) = e17(h = 1) + @2y(h = 2) + -~ + py(h — p) + ElerYi-n]

> avec E[;Y;_p] = 02 si h =0, et 0 sinon (innovation).
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Equations de Yule-Walker pour I'AR(p)

» On obtient la fonction d'autocovariance en résolvant le systéme linéaire :

Y(0) = o17(1) + @27(2) + - + ¥ (p) + 02
(1) = ¢17(0) + ay(1) + -+ + ppy(p — 1)
e17(1) +p27(0) + - + opy(p — 2)

-

~—~

©

=
I

Y(p) = e17(p = 1) + pay(p —2) + - + ¢7(0)
» Les termes suivants sont obtenus par récurrence :

y(h) = e1y(h = 1)+ o2y(h = 2) 4+ --- + @py(h —p) pour h >p
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Plan

Inversibilité des processus MA
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Du MA vers I'AR : inversibilité

» Nous avons montré qu'on peut réécrire un processus AR comme un MA(o0) si les
racines du polyndme retard sont > 1 en module.

» Question : Est-il possible de faire le chemin inverse 7 C'est-a-dire d'écrire un
processus MA sous la forme d'un AR(c0) ?

> La réponse est oui, sous certaines conditions.
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Exemple : inversibilité du MA(1) (1/2)
» Supposons que (Y;,t € Z) soit un MA(1) :
Yi =€t + 011

avec (g4,t € Z) ~ BB(0,0?).
» Ent—1:Y, 1 =61+ 0c49,donce;1 =Y, 1 —0Oe4_o.
» En substituant dans I'équation du MA(1) :
Y =&+ 0Yi 1 — 0% o
» Ent—2:c_9=7Y; 9 — 0c;_3. En substituant :

Y =e +0Y,_1 — 0?0+ 0
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Exemple : inversibilité du MA(1) (2/2)

» Si |f| < 1, on peut continuer ainsi indéfiniment :

o

Y, = Z(*G)iyﬁi + &¢

i=1
» C'est un processus AR(o0) !

» Implicitement, nous avons inversé le polynéme retard ©(L) =1+ 6L.

» Condition d’inversibilité : Pour que cela soit possible (plus généralement pour un
MA(q)), il faut que toutes les racines du polynéme ©(z) =1+ 612+ - - + 6,29
soient > 1 en module.
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Définition de l'inversibilité

» Définition : Un processus MA(q) est dit inversible s'il est possible de le réécrire
sous la forme d'un AR(o0).

» Condition d’inversibilité : Le processus MA(q) défini par :
Yi=e+ 0101+ +04e1—g =0 (L)ey

est inversible si et seulement si les racines du polynéme
O(z) =14+612+4 -+ 0427 sont > 1 en module.

» Remarque : Un modéle MA est toujours causal (par construction). Un modéle
AR est toujours inversible (par construction).
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Plan

Le modele ARMA(p,q)
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Motivation : somme de deux AR(1)

» Soient (Y;,t € Z) et (Xy,t € Z) deux processus AR(1) :
Yi=ovyYi1+evy, Xi=oxXi1+ex,
avec |py| <1, |ox| <1, (eyy) et (ex,) des bruits blancs indépendants.

» Définissons Z; = X; + Y;. Est-ce que (Z;) est un processus AR ?

» Réponse : Non !

» En utilisant les polyndmes retard et aprés calculs (voir notes), on montre que :

Zy = (px +ov)Zi1 + oxpy Zi2 = 5
ou Sy est un processus MA(1).
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La somme de deux AR(1) est un ARMA(2,1)

» Apreés calculs, on montre que S; = ex ¢+ eyt — PxEyi—1 — PYEx—1 a la
structure d'un MA(1). En effet :

15(0) = (1 + @3 )o% + (1+ ¥X)oy
v5(1) = —pxoy — pyox
vs(h) =0 pour |h| > 1

C'est bien la structure d'un MA(1) : Sy = — On—1.

» Conclusion : La somme des deux AR(1) s'écrit :
Zy = p1Z1-1 + p2Zi—o +np — Oy

» C'est un processus ARMA(2,1) : deux retards sur la partie AR, un retard sur la
partie MA.
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Paramétres de la partie MA(1) (1/2)
> Pour un MA(1) S; = 7 — ;1 avec n; ~ BB(0,07) :

15(0) = 1+ 6%y, 4s(1) = ~bo;

» Posons A= (1+ )0 + (1 + ¢%)o% et B = pxo? + pyo%. En identifiant :

(1+ 02)02 =A, 9072] =B

» En divisant et réarrangeant : B#?% — A9+ B =0, soit :

o A+ /A2 —4B2
- 2B

Les deux racines sont 6 et 1/6. On choisit [§] < 1 (inversibilité). Puis o7 = B/6.
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Unicité de la solution inversible
» L'équation B#? — Af + B = 0 a deux racines de produit B/B =1 (Vieta).

» |l suffit de montrer que le discriminant A = A% — 4B? est strictement positif
(racines réelles distinctes), car alors une racine vérifie |§| < 1 et l'autre |1/6]| > 1.

» En développant :

A2 —4B% = (1 - 3 )%0% +2[(1 — pxpy)? + (ox — ov) ] ok ot + (1 — %) 0t

» Puisque |px| < 1 et |py| < 1, chaque terme est > 0 et les termes extrémes sont
> 0, donc A > 0. La solution inversible |§| < 1 existe et est unique.
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Paramétres de la partie MA(1) (2/2

| 2

>

2

Cas symétrique : ox = py = ¢, 0% = 0% = 02

s ~—

On obtient A = 2(1 + p?)o? et B = 202,

L'équation BH? — A9 + B = 0 donne :

0 20+¢?)£2(1-¢?)  (14+¢*) £ (1-¢?)
B 4p B 2¢

Les deux solutions sont § = ¢ et = 1/¢p. Comme |p| < 1, la solution inversible
est 0 = .

La variance de I'innovation est o) = B/ = 2p0? /¢ = 20°.
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Définition du processus ARMA(p,q)

» Définition : Le processus (Y;,t € Z) est un processus ARMA(p,q) s'il est défini
par :
Yi=c+prYia+-+pYip+er+0ig1+ -+ 0454

avec (g¢,t € Z) ~ BB(0,0?) et ¢, (¢;), (0;) des paramétres réels.

» Ecriture avec polynémes retard :
O(L)Y; = ¢+ O(L)e,

avec ®(L)=1—@p1L—---—pplP et O(L) =1+ 6L+ -+ 6,L1.
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Condition de représentation minimale

» Hypothése importante : On suppose que les racines des polynémes ®(z) et O(z)
sont distinctes, de facon a assurer que la représentation ARMA soit minimale.

» Exemple de représentation non minimale :
Yi —aYi1 =& —ag
» Cela semble &tre un ARMA(1,1), mais en fait :
(1 —-al)Y; =(1—al)e
» Les deux polyndmes retard ont la méme racine | En simplifiant :
Yi=¢

» C’est simplement un bruit blanc.
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Stationnarité et inversibilité

» Stationnarité : Le processus ARMA(p,q) est asymptotiquement stationnaire
au second ordre si et seulement si les racines de ®(z) sont > 1 en module.
(Condition sur la partie AR uniquement)

» Inversibilité : Le processus ARMA(p,q) est inversible (on peut le réécrire sous
forme AR(c0)) si et seulement si les racines de ©(z) sont > 1 en module.
(Condition sur la partie MA uniquement)

» Un processus ARMA peut &tre stationnaire sans étre inversible, et vice versa.
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Espérance de I'ARMA(p,q)
» Sous |'hypothése de stationnarité, calculons |'espérance.

» En prenant |'espérance de I'équation définissant le processus :
ElY;] = c+ @1E[Y; 1] + - - - + @ E[Y; ] + Eley] + 01 E[gs—1] + - - -
» Sachant que E[e;] = 0 et que I'espérance est constante :

p=cH it -+ opp

» Dou :

- C
L—p1— -~y

W

» L'espérance ne dépend que de la partie AR du modéle.
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Autocovariance : processus centré

» Pour calculer la fonction d'autocovariance v(h) = E[(Y; — u)(Yi—p — 1)], on
centre le processus.

» On pose fft =Y; — pu. On peut montrer que :
Y, = <P1f/t—1 +- 4+ (pr/;f—p +er+01gi—1+ -+ 04514

» C'est le méme modéle ARMA(p,q) mais sans constante.

» Démonstration : En substituant © = ¢/(1 — >_ ;) dans |'équation originale et en
simplifiant.
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Exemple détaille : ARMA(1,1)

» Soit le processus ARMA(1,1) :
Yi—Yi1 =& +e — 01

avec |p| <1, 10| <1, ¢ #6.

» Espérance :
£

le—go

> Processus centré : Y, = Y; — p vérifie :

Y = Y1+ — 051
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ARMA(1,1) : calcul de v(0) (1/2)

» En multipliant I'équation centrée par Y; et en prenant |'espérance :
7(0) = @y (1) + E[(Yi)er] — 0E[(Ye)er—1]

» Calcul de E[ﬁat] : Puisque Y; = Y1 + & — 041
E[Yier] = E[(¢Yi—1 + &1 — Oei-1)et] = 0>

car &; est une innovation (orthogonale au passé de Y').
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ARMA(1,1) : calcul de v(0) (2/2)

> Calcul de E[Yie; 4] :
E[Yier 1] = E[(@Yi 1 + &t — O 1)er1]
= @E[ﬁ—lﬁt—l] — fo?
= ¢E[(¢Y;_2 + e1-1 — Oe1_2)er_1] — 0
= po® — 0% = (p — 0)c>

» Ainsi :

7(0) = pv(1) + 0> (1 + 0% — ) |
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ARMA(1,1) : calcul de (1)

» En multipliant I'équation centrée par Y,_; et en prenant |'espérance :
v(1) = py(0) + E[Yi—12¢] — OE[Y;_154-1]

> E[}N/t_lat] = 0 car Y;_1 ne dépend pas de £
> E[ﬁ,lst,l] = 02 (méme calcul que précédemment)

» Donc :

Y(1) = ¢7(0) — o
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ARMA(1,1) : résolution du systéeme

» Nous avons le systéme :

{7(0) = oy(1) + (1 + 6% — ¢b)
v(1) = ¢7(0) — fo?

» En substituant la deuxiéme équation dans la premiére :

7(0) = (@Y(0) — 80°) + 0% (1 + 6% — ©0)

» Soit :
(1= ¢*)9(0) = o?(1 + 6% — 20)
> Do :
62 — 20 + 1
_ 9
10) =0 1o
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ARMA(1,1) : fonction d'autocovariance compléte

> Résultat : )
0= — 200 + 1
7(0) = 021_7@2
7(1) = v(0) — 6?
v(h) =¢y(h—1) V|h[>1

» Vérifications :

» Si 6 =0 : on retrouve la fonction d'autocovariance de I'AR(1)

» Si ¢ =0 : on retrouve la fonction d'autocovariance du MA(1)

» Propriété générale : Dés que h > ¢ (I'ordre de la partie MA), le retour a zéro de

v(h) est gouverné par la partie AR (dynamique géométrique).
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Plan

Fonction génératrice des autocovariances
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La fonction génératrice des autocovariances

» Soit {X;} un processus stationnaire d'autocovariance «y(h) = Cov(X;, Xy_p). La
fonction génératrice des autocovariances (FGACV) est définie par :

+oo

gx(z) = Y ~(h)"

h=—o00

ol z est une variable complexe.
» Puisque v(—h) = v(h) (symétrie), on a gx(2) = gx(z71).

» Sur le cercle unité z = e, la FGACV donne la densité spectrale :

1

fx(w) = ggx(e_w)

> La série converge absolument pour |z| =1 lorsque >, |y(h)| < oc.
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Le processus ARMA(p, q)

» Considérons le processus ARMA(p, q) :
(L)X, = O(L)e,
ol ®(L)=1—¢1L —--- — ¢, LP est le polyndme AR,

O(L) =1+461L+ -+ 0,L9 est le polynéme MA, ¢, ~ BB(0,0?) est un bruit
blanc et L est I'opérateur retard.

» Condition de stationnarité : toutes les racines de ®(z) = 0 sont a |'extérieur du
cercle unité.

» Condition d'inversibilité : toutes les racines de ©(z) = 0 sont a I'extérieur du
cercle unité.
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Représentation MA(o0)

» Sous la condition de stationnarité, le processus admet une représentation de Wold :
e}
Xi=¢(L)er =Y e
j=0

ot (L) = O(L)/®(L) = 372, ¢ L7 avec ¢ = 1.

> Les coefficients 1/; sont obtenus en développant ©(z)/®(z) en série entiére :

D)

pour |z] <1

> La série > 2% [1);] < oo est garantie par la stationnarité.
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Autocovariance a partir de la représentation MA(o0)

> Pour le processus MA(co) X = > 7% 1hjer—j, I'autocovariance est :

v(h) = Cov | Y wjerj, Y Vkr-nk
=0 k=0

» Puisque Cov(ei—j,er—p—1) = azl{j:h+k}, on obtient pour h > 0 :

y(h) = 0> Withien

=0

» Par symétrie, y(—h) = v(h).
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Démonstration de la FGACV : étape 1

Partons de la définition :
+o0

h=—o0

Substituons la formule de I'autocovariance pour h > 0 :

-1

gx(z) = > y(n)2" +~(0 +Zv

h=—o00

En utilisant y(h) = o Z;ﬁo Vijpin| -

“+o00 0

h

gx(z) =0 Y D vt | 2
h=—oc0 \ j=0
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Démonstration de la FGACV : étape 2

En réarrangeant la double somme (le théoréme de Fubini s'applique grace a la
convergence absolue) :

gx(2) = 0® Y > ahupzt

§=0 k=0

Ceci peut se factoriser :

gx(2) = | Y 277 (Z ¢kzk)
=0 k=0
=0’ (=) Y(2)
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Démonstration de la FGACV : étape 3

» Rappelons que ¥(z) = O(z)/®(z). Donc (2~ 1) = O(z~1)/®(271).

» En substituant : .
2.0 el

o(z1) 2(2)

gx(z) =

» La FGACV d'un processus ARMA(p, ¢) est donc :

20(2)0(z7)

P =T G
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Interprétation de la formule

_ 280G
W= et

» Le numérateur ©(2)O(z1) capture la contribution de la composante MA.
» Le dénominateur ®(2)®(z~!) capture la contribution de la composante AR,

» Les produits comme O(2)O(z~!) assurent la symétrie : si on remplace z par 271,

la FGACV reste inchangée.

» Sur le cercle unité (z = e=™) :

puisque O(e™) = O(e~w).
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Cas particuliers
» Processus MA(q) pur (®(z) =1) :

» Processus AR(p) pur (©(z) =1) :

o2
W= G
» Bruit blanc (®(z) =0(z) =1) :
g:(2) = o2

ce qui confirme que v(0) = o2 et y(h) = 0 pour h # 0.
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Processus MA(1) : mise en place

» Considérons le processus MA(1) :
Xt :Et+0€t_1, Et NBB(O,O'Q)

avec 0| < 1 pour l'inversibilité.
» Polynémes : ®(z) =1 (pas de composante AR) et O(z) =1+ 0z.

» Formule de la FGACV :

gx(2) = 0?0(2)0(z7 Y = *(1 +02)(1 + 627 1)
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Processus MA(1) : développement de la FGACV

» Développons le produit :

gx(2) = c*(1+602)(1 +62"1)
=o?(1+0z"" +02+67)
=02 (027" + (1 +6%) + 02)

-1

» C'est un polynéme de Laurent avec des termes en 27!, 20 et 2! uniquement.

> Le coefficient de 2" donne v(h).
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Processus MA(1) : autocovariances

» De gx(z) =02 (92"1 + (14 6%) + 92), on lit les autocovariances :

7(0) = o%(1 + 6%) (coefficient de 2°)
v(£1) = 026 (coefficient de z*!)
v(h) =0 pour |h| > 2

» Autocorrélation d'ordre 1 :

» |p1| < 1/2 pour tout 6, avec maximum atteint pour § = 1.
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Processus MA(1) : illustration graphique

Fonction d'autocovariance du MA(1) avec 6 = 0,6

14 92 37(]1)/0’2

Retard h
! : *—
-3 -2 -1 1 2 3

La fonction d'autocovariance du MA(1) a un support fini : elle « s'annule » aprés le
retard 1.
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Processus AR(1) : mise en place

» Considérons le processus AR(1) :
X; = ¢X; 1461, e~ BB(0,0°%)

avec |¢| < 1 pour la stationnarité.
» Polynémes : ®(z) = 1 — ¢z (polyndme AR) et ©(z) = 1 (pas de composante MA).

» Formule de la FGACV :
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Processus AR(1) : développement en série

» Pour extraire les autocovariances, développons en série de Laurent. Puisque

lp| < 1: N
:Z()quzj et gzﬁz_l Z(;Sk —k
j=

» Par conséquent :
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Processus AR(1) : extraction des coefficients

> Le coefficient de 2 (pour h > 0) est obtenu lorsque j — k = h, soit j =k + h :

v(h) — 0,2 Z¢(k+h)+k — 0.2¢h Z ¢2k
k=0 k=0

> Puisque Y oo, ¢?F = —1j¢2

2 |h|
y(h) = f_¢¢2 =7(0)¢"

o2
ol ¥(0) = —— est la variance.

1—¢2
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Processus AR(1) : propriétés

> ~(h) = 7(0)¢!"! décroit geométriquement (décroissance exponentielle).

» Si ¢ > 0, toutes les autocovariances sont positives (persistance). Si ¢ < 0, les
autocovariances alternent en signe (oscillation).

» La demi-vie est h* = —log(2)/log(|#]).

» Fonction d'autocorrélation :

v(h)
ph = =¢
~(0)
La FAC de I'AR(1) « décroit » exponentiellement, contrairement au MA(1) qui «

s'annule ».
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Processus AR(1) : illustration graphique

Fonction d'autocorrélation de I'AR(1) avec ¢ = 0,7

L‘Ph = ¢lhl

.

-
- - ~
-
}

1] IR

5 -4 -3 -2 —1 1 2 3 4 5

La FAC décroit exponentiellement avec |'enveloppe ¢!* (ligne pointillée).
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Processus ARMA(1,1) : mise en place

» Considérons le processus ARMA(1,1) :
Xi— X1 =1 +0e-1, & ~ BB(0,0%)

avec |¢p| < let |f] < 1.
» Polynémes : ®(z) =1 — ¢z et O(z) =1+ 0z.

» Formule de la FGACV :

o (1+02)(1+60271)
(1—¢2)(1—¢z71)

9x(z) =0
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Processus ARMA(1,1) : développement du numérateur

» Développons le numérateur :

(1+602) 1402 =01+ (1+6% +6z

» Donc :
0027+ (14 60%) + 0z

(1—¢2)(1—¢z71)

gx(2) =0

» On peut écrire ceci comme une somme de trois termes :

g% o?(1+6%) i
oS s g R gy g R s gy
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Processus ARMA(1,1) : utilisation du résultat AR(1)

1

» D'aprés |'analyse de I'AR(1), le coefficient de =z dans est
v ) (=621 —621)
qs\hl
Cp = 1_7¢2

» Chaque terme contribue a y(h) :

> (1+6%)cy, pour le terme constant
» Ocp i1 pour le terme en 271

» fOcn_1 pour le terme en z

» Par conséquent :

v(h) = o [(1 + 0%)cp, + Ocpyr + Hch_l]
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Processus ARMA(1,1) : variance v(0)

» Pour h=0:

7(0) = o [(L + 6*)co + Ocy + Oc_1]
oo [1+6% 209
-7 [1—¢2+1—¢2]

» D'ou la variance de 'ARMA(1,1) :

(14 20¢ + 6?)
1— @2

0.2
7(0) =
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Processus ARMA(1,1) : premiére autocovariance (1)

> Pour h=1-:
Y(1) = 0® [(1+ 6%)e1 + ez + Oco)
= 1f2¢2 [(1+6%)¢ +04% + 0]
_ *(@+0)(1+69)
1— ¢2
» D'ou :

0.2
(1) = ZHEED LD
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Processus ARMA(1,1) : autocovariances d'ordre supérieur

» Pour h > 2, la récurrence de Yule-Walker donne :

y(h) = ¢y(h —1) pour h > 2

» Vérification : multiplions X; — ¢X;_1 = & + 0g4_1 par X;_;, et prenons
I'espérance :

y(h) = ¢y(h — 1) = E[es Xip] + OE[e1—1.X; 1]
Pour h > 2, les deux espérances sont nulles car ¢; et £;_1 sont non corrélés avec

X

» Donc y(h) = ¢"~1~(1) pour h > 1.
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Processus ARMA(1,1) : solution compléte

» Autocovariances de 'ARMA(1,1) :

2 0 62 2 0 0
o) = TEHEED) oy - CUEIIEED 1) = 991) (h2 1)
» Autocorrélations :
1+6 0
p1= ( 1—:_ ;{;{éﬁzz ), pn = ¢""'p1 pour h > 1

» La FAC commence a p; (qui dépend a la fois de ¢ et ) puis décroit
exponentiellement au taux ¢.
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Effet des filtres linéaires sur la FGACV

» Soit V; = ¢(L)X; = Z]__OO 1 X;—; une version filtrée de X;. La FGACV du
processus filtré est :

gy (2) = Y(2)e (=" Hgx(2)

» Démonstration : puisque Y; = 1(L) Xy, nous avons :

o), | _ Hew)

o) T e

Y= iz |

L'application de la formule de la FGACV a cette nouvelle représentation MA(c0)
donne le résultat.
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Exemple : filtre de différence premiére

» Considérons la différence premiére VX, = X; — Xy 1 = (1 — L) X;. Ici
Y(z) =1—z, donc :

G =(1-2) (12 =2z -z

0.2

(1—¢2)(1—¢z1)
02(2—z—271)

1—¢z)(1—¢z71)

» Si X; est un AR(1) avec gx(z) =

gvx(z) = (

» En z=1:gyx(1) =0. La série différenciée a une « variance de long terme »
nulle, ce qui est cohérent avec une sur-différenciation d'un processus stationnaire.
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Sommes partielles et variance de long terme

» Soit S, = X1 + X2+ --- + X,, la somme partielle. La variance est :

n o n n—1
=Y ) At—s) = Z (n — |h])y(h)
t=1 s=1 =—(n—-1)

» Pour n grand :
V(Sh)

— gx(l) = 27TfX(O)

> ('est la variance de long terme ou densité spectrale a la fréquence zéro.
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Variance de long terme pour les processus ARMA

» Pour un processus ARMA(p, q) :

V(S _ 5001 o (A6t +0,)?
n11—>120 n —gX(l)—U(p(l)z_J (1—¢r— - —¢p)?
> Exemples :
o2
> AR(1) : gx(1) = =92

> MA(1) : gx(1) = o?(1+6)2

2 (1+0)°
(1—9¢)?
» Si ®(1) = 0 (racine unitaire), la variance de long terme est infinie, signalant une
non-stationnarité.

> ARMA(1,1) : gx(1) =0
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Probléeme de factorisation spectrale

» Etant donné une FGACV gx(z), trouver une représentation MA(oco)
Xy =9(L)es
telle que gx (2) = o (2)Y(z71).
» Factorisation canonique : on cherche v(z) avec :

1. toutes les racines de ¥ (z) a I'extérieur du cercle unité (inversibilité)

2. ¥(0) =1 (normalisation)

» La FGACV fournit la « matiére premiére » ; la factorisation spectrale extrait le
filtre causal.
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Exemple de factorisation
» Considérons la FGACV :

2 (140,52)(1+0,5271)
(1-0,82)(1—-0,8271)

gx(2) =

» Numérateur : O(z) = 1+ 0,5z a une racine en z = —2 (hors du cercle unité).
» Dénominateur : ®(z) =1 — 0,8z a une racine en z = 1,25 (hors du cercle unité).
P> La représentation canonique est :

(1-0,8L)X; = (14 0,5L)z,

C'est un processus ARMA(1,1) inversible avec ¢ = 0,8 et § = 0,5.
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Cas non inversible
» Considérons le processus MA(1) avec § = 2 (non inversible) :
Xt =&+ 2515_1

FGACV : gx(2) = 0?(1+22)(1 +2271) = 02(2271 + 5 + 22).

» En réarrangeant : (1 +22)(1+2271) =4-(1+0,52)(1 + 0,527 1), d'ous
gx(2) = (20)%(1 + 0,52)(1 + 0,5z~ 1).
» Représentation inversible :
Xy =m+05n-1, m~ BB(0,40%)

Les deux représentations ont la méme FGACV (donc les mémes propriétés du
second ordre).
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Résumé : résultats principaux
1. Définition de la FGACV : gx(z) = S22 v(h)2"

,0(2)0(z1)

2. Formule ARMA : gx(2) =0 B(2)0(z-1)

3. Extraction des autocovariances : développer en série de Laurent, lire les coefficients
de 2"

4. Filtrage linéaire : gy (2) = ¥(2)y (27 1) gx (2)

5. Variance de long terme : lim,,_,o, V(S,,)/n = gx (1)

1
6. Densité spectrale : fx(w) = %gx(e

—iw)
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Résumé : démarche pratique

Pour trouver les autocovariances d'un processus ARMA(p, q) :
1. Ecrire ®(z) et O(2)

()(=71)

N

. Calculer gx(z) =0

w

. Développer en série de Laurent en utilisant :
» la multiplication directe pour les processus MA

» les séries géométriques pour les processus AR
4. Lire y(h) comme coefficient de 2"
5. Vérifier avec les équations de Yule-Walker si nécessaire
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Plan

Résumé et comparaison
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Tableau récapitulatif

MA(q) AR(p) ARMA (p,q)
Stationnarité Toujours Racines > 1 | Racines AR > 1
Inversibilité Racines > 1 Toujours Racines MA > 1
~v(h) = 0 pour h>gq Jamais Jamais
Décroissance Coupure Géométrique Géométrique
de y(h) nette (aprés h > q)

Pour un ARMA(p,q), la dynamique de retour a zéro de |'autocovariance est gouvernée
par la partie AR pour h > g.
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Résumé général
» MA(q) : autocorrélation nulle au-dela du rang g, toujours stationnaire.

» AR(p) : autocorrélation non nulle a tout ordre, décroissance géométrique.
» Stationnaire si racines du polynéme retard > 1 en module

» Pour p > 3 : pas de condition explicite simple
» ARMA(p,q) : combine les deux structures.
» Stationnarité : condition sur la partie AR

» Inversibilité : condition sur la partie MA
» Espérance : ne dépend que de la partie AR

» Autocovariance : systéme de Yule-Walker étendu

» La marche aléatoire (¢ = 1) : processus I(1), non stationnaire.
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