Processus Stochastiques Stationnaires

Séries Temporelles
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Introduction aux processus stochastiques
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Définition d'un processus stochastique

» Un processus stochastique est une suite de variables aléatoires réelles { X, }c7.
» Une série temporelle est une réalisation d'un processus stochastique.

» Pour caractériser complétement un processus stochastique, il faut spécifier la
distribution jointe de (Xy,, X4,, ..., Xt,) pour tout (t1,t2,...,t,) € Z™ et pour
tout n € N, avec ¢; # t; pour tout i # j.

» |l faut énormément d'information pour définir complétement un processus
stochastique.
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Processus linéaires

» Probléme de I'inférence : Comment estimer les paramétres du processus
stochastique a partir d'une seule réalisation (série temporelle) ?

» Pour traiter ce probléme, on se restreint aux processus linéaires : processus dont
les distributions jointes sont caractérisées par les moments d'ordre 1 et 2 :

pe = E[X4]

(L, 8) = Cov(Xy, Xs) = E[(Xy — pe) (X = p1s)]
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Propriété de la fonction d'autocovariance

» Exercice : Montrer que ~(t,s) = E[X; X] — pfis-

» Démonstration :

E
B [X: Xs — Xpps — e Xs + puefis]
= E[Xi X,] — E[Xi]ps — E[XS] + peps
E
E

[(XoXs] — pueps — puapis + papis
[(Xi Xs] — peps O
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Le probléeme de I'estimation avec une seule réalisation

» Exemple industriel : Supposons qu’un processus stochastique décrit le diamétre
d'un cable sortant d'une machine a intervalles réguliers (chaque métre).

» Une série temporelle = mesures sur un cable de 1 km (1000 observations).

> Sil'on fabrique K cables avec la méme machine, on peut estimer pi; :
LS~ o0
- J
Mt = ? Z Xt
7=1
ou Xt(j) est le diamétre du cable j au t-éme métre.

» Probléme pour I'économiste : On n'observe qu'une seule série temporelle pour le
PIB... On ne peut pas « remonter le temps » pour obtenir une nouvelle réalisation.
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Plan

Stationnarité
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Définition de la stationnarité (au sens strict)

» Le processus stochastique (X¢,t € Z) est stationnaire si et seulement si la
distribution jointe de (Xy,, X4,, ..., Xy, ) est identique a la distribution jointe de
(Xty+hs Xtgthy - -y X4, +n) pour tout (t1,ta,...,t,) € Z™, pour tout n € N, pour
tout h € Z, avec t; # t; pour i # j.

» La distribution jointe est invariante dans le temps.

» Pour les processus linéaires, nous n'avons pas besoin d'une définition si générale.
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Stationnarité au second ordre

» Le processus stochastique (X;,t € Z) est dit stationnaire au second ordre si et
seulement si ses moments d’ordre 1 et 2 sont invariants :

EX]=p Vt

VIXi] =2 Vvt
Cov(Xy, Xs) =v(t —s)

» Un processus stochastique (X¢,t € Z) stationnaire au second ordre appartient a
I'espace des variables aléatoires de carré intégrable (L2). La norme dans cet espace

est définie par :
X[ = VE[X?]
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Conséquences de la stationnarité au second ordre

> Si le processus est stationnaire au second ordre, alors :
Cov(Xy, Xi—p) =7v(h) WVt

La covariance ne dépend pas du temps mais seulement de la distance h entre X;
et X;.

» En nous restreignant aux processus stochastiques stationnaires, nous avons
considérablement diminué le nombre de paramétres a estimer.

» Mais pour pouvoir effectivement estimer les paramétres (par exemple |'espérance),
il faut aussi que le processus soit ergodique.
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Ergodicité : intuition

> Le concept d'ergodicité est techniquement difficile, mais |'idée intuitive est que des
variables aléatoires doivent étre d'autant moins corrélées qu'elles sont éloignées
dans le temps.

» Si on utilise une moyenne empirique pour estimer |'espérance :

1 n
Xn =~ > X
t=1

alors E[X,,] = p (sans biais) et surtout V[X,,] —— 0, assurant la convergence de
n—oo

X, vers p.

» Question clé : Sous quelles conditions sur y(h) a-t-on V[X,,] — 07
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Variance de la moyenne empirique (1/4)

» Calculons la variance de X,, = %Z?Zl X;:

1 < 1
=V|=) X;| ==V

n
> Xt]
t=1
» En développant la variance de la somme :

n n 2 n n
A ZXt] =E <Z(Xt - u)) - Cov(X;, X
t=1 t=1 s=1

t=1

» Par stationnarité, Cov(X;, Xs) = v(t — s), donc :

v ZXt] =) > t—s)
t=1

t=1 s=1
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Variance de la moyenne empirique (2/4)

n n n
» OnaV ZXt] = ZZ’y(t— s).
t=1 t=1 s=1
» Posons h =t — s. Pour chaque valeur de h € {—(n —1),...,n — 1}, comptons le
nombre de couples (¢, s) tels que t —s = h:
» Sih=0:les couples (1,1),(2,2),...,(n,n) = n termes

> Sih=1":les couples (2,1),(3,2),...,(n,n—1) = n — 1 termes

> Plus généralement, pour h € {—(n —1),...,n— 1} : n — |h| termes
» Donc :
n o on n—1
2.2t = 3, (n=lhnh)
t=1 s=1 (n 1
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Variance de la moyenne empirique (3/4)

» Nous avons donc :

ng S (ol
=—(n—1)

» En utilisant la parité y(h) = y(—h) :

V[X,] =

» Résultat :
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Variance de la moyenne empirique (4/4)

» Cas 1 (bruit blanc) : Si v(h) =0 pour h # 0 :

vix,] = 29 _ o’ 0 v

n n mn—oo

» Cas 2 (autocovariance constante) : Si y(h) = ¢ > 0 pour tout h :

VX = S+ 2 1= ez«
n n

» La variance ne converge pas vers 0 : |'estimation est impossible.
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Condition suffisante de convergence
» Si la fonction d’autocovariance est absolument sommable :

“+o00

> (b)) < 400

h=—o00

alors V[X,,] — 0 quand n — oo.

» Démonstration : Si >, |y(h)| < oo, alors :

n—1 +o00
_ 1 1
VIX <= Y0 <= Y (=20
h=—(n—1) h=—oc0

» Cette condition implique que y(h) — 0 suffisamment vite quand |h| — oco. Elle est
satisfaite par la plupart des modéles ARMA.
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Comportement asymptotique de la variance

» Quand n — oo, on peut montrer que :
n- VX, —— v(h) =27 £(0)

n—00
h=—oc0

ol f(w) est la densité spectrale du processus.

» La quantité ), y(h) = 27 f(0) est appelée variance de long terme.

> Interprétation :
> Si >, v(h) >~(0) : la dépendance positive augmente la variance de X,.

> Si >, v(h) <~(0) : la dépendance négative diminue la variance de X,.
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Moments d'un processus stationnaire
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Fonction d'autocovariance

» On note v:Z — R, h+— ~v(h) la fonction d’autocovariance d'un processus
stochastique stationnaire au second ordre.

P> Propriétés :
1. 7(0) = V[X)] = 0

2. y(h) =~(=h)  (parite)
3. |y(h)| <~v(0) pour tout h

4. ~ est une fonction positive (au sens de la positivité définie)
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Démonstration de la parité

» Propriété : v(h) = y(—h).

» Démonstration : Il suffit de remarquer que

Y(=h) = Cov(Xy, Xe4h)
=E[(X¢ — p)(Xesn — )]
=E [(Xen — 1) (Xe — p)]
=v(h) O
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Inégalité de Cauchy-Schwarz pour la covariance (1/2)

» Pour deux variables aléatoires U et V' de carré intégrable :

ICov(U, V)| < VV(U) - /V(V)

» Démonstration : Sans perte de généralité, supposons E[U] = E[V] = 0. Alors
Cov(U,V) =E[UV] et V(U) = E[U?].
» Pour tout A € R, la variable aléatoire (U + A\V')? est positive, donc :

E[(U+AV))] >0 VAeR

» En développant :
E[U?] 4+ 2AE[UV] + N?E[V?] > 0
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Inégalité de Cauchy-Schwarz pour la covariance (2/2)

» Nous avons un trindme en X :

P(\) =E[VN2 4+ 2E[UVIA+E[U? >0 VAR

» Pour qu'un trindme aA? + b\ + ¢ soit toujours > 0, son discriminant doit &tre < 0 :

A = 4E[UV]? — 4E[U%E[V?] <0

» En prenant la racine carrée et en revenant aux variables non centrées :

|Cov(U, V)| < V/V(U) - /V(V)| O
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Démonstration de |y(h)| < ~(0)
» Propriété : |y(h)| < ~(0) pour tout h.
> Cette propriété découle de I'inégalité de Cauchy-Schwarz.

» En appliquant cette inégalite a U = Xy et V = X, 4 :

|7(h)| = ‘COV(XtaXt—h” < \/V(Xt) : \/V(Xt—h)

» Par stationnarité, V(X;) = V(X;_p) = v(0), donc :

[y ()] < v7(0) - v/7(0) =~(0) O
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Interprétation et conséquences

» L'inégalité |y(h)

| < ~(0) signifie que la covariance entre X; et X;_j ne peut
jamais dépasser (en va

leur absolue) la variance du processus.

» Cas d’égalité : |y(h)| = 7(0) si et seulement si X; et X;_;, sont parfaitement
corrélés.

» En divisant par v(0) > 0, on obtient :

2 <1

» Le ratio y(h)/v(0) est toujours compris entre —1 et 1. Ce ratio définit la fonction
d’autocorrélation p(h).
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Positivité de la fonction d'autocovariance

» Dire que la fonction d'autocovariance est positive ne veut pas dire que y(h) > 0
pour tout h. Cette propriété découle de la positivité de la variance.

» On sait que V> ; a;Xy,] > 0 pour tout vecteur (ai,...,ay).

» Supposons E[X;,] = 0 pour tout 3. Alors :

n n n
zaixti] S a1y
i=1

i=1 j=1

\Y%

» Cette double somme doit &tre > 0 pour tout vecteur a # 0.
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Plan

Construction de processus stationnaires
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Théoréme de construction

» Si (Xt,t € Z) est un processus stochastique stationnaire et si (a;);>0 est une suite
de nombres réels absolument sommable :

o0
Z la;| < 400
i=0

alors
oo
Y; = E a; Xi—;
i=0

définit un nouveau processus stochastique stationnaire.
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Eléments de preuve (1/2)
» Si (X, t € Z) est de carré intégrable, alors il en va de méme pour (Y3, t € Z).

> En effet :

Vel =

o0
g a; Xt
i—0

oo o0
<D lail - 1 Xe—ill = I1X11) lail < +oo
1=0 =0

» L'espérance de (Y;,t € Z) est :

(o] o0 o
zalxﬂ] S X =Y =y
=0 =0 =0

E[Y] =E

> L'espérance est constante et ne dépend pas de ¢.
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Eléments de preuve (2/2)

» La fonction d'autocovariance de (Y;,t € Z) est :

Yy (k) = Cov(Yy, Yi_p)

oo o0
= Cov E aiXt_i, E antfhfj
1=0 7=0

o o0
=SS g (h i )
i=0 j=0
» Les moments d'ordre 1 et 2 sont bien indépendants du temps. a

@@ el18cd8d — 30/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Plan

Exemple : Processus MA(1)

@@ el18cd8d — 31/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Bruit blanc

» Soit (X¢,t € Z) une suite de variables aléatoires indépendamment et
identiquement distribuées (bruit blanc) avec :

E[X, =0 Vit

V[Xy =02 WVt
y(h) =0 VYh#0

» Ce processus stochastique est stationnaire.

» On note souvent : X; ~ BB(0,0?) ou &; ~ BB(0,0?).
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Définition du processus MA(1)

» Définissons un nouveau processus stochastique (Y;,t € Z) :

Yi = AXy + pXi 1

» En termes du théoréme précédent : ag = A, a1 = p, a; = 0 pour i ¢ {0, 1}.

» On montre facilement qu'il s’agit d'un processus stochastique stationnaire au
second ordre.

@@ el18cd8d — 33/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Espérance du processus MA(1)

> L'espérance est nulle pour tout ¢ :
E[Y;] = E[AX; + pXi—1]
= AE[Xy] + pE[X; 1]
=XA-0+p-0
=0
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Variance du processus MA(1)

» La variance est finie et constante :

VIYi] = VIAX: + pXi1]
=E[(AXy + pXi-1)?] (car E[Yy] = 0)
= E [NX7 + 200X, X¢ 1 + p° X7 4]
= NE[X7] + 200 E[X, X, 1] +p°E[X] ]
—_——
=0 (indép.)
= (A2 + )0
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Fonction d'autocovariance du MA(1)

» Calculons la fonction d’autocovariance y(h) = Cov (Y, Yi—p) :
’}/(h) = COV()\X,: 4+ p X1, A X p + pXt—h—l)

= AQCOV(Xt, thh) + A,OCOV()(t7 Xt,hfl)
+ pACov (X1, Xy_p) + p*Cov(Xi—1, Xy—p—1)

> Au total :
A2+ p%o? sih=0
v(h) = { Apo? sih==+1
0 sinon
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Interprétation

» Contrairement au processus d'origine (X;,t € Z) (bruit blanc), le processus
(Y;,t € Z) admet de la dépendance (relativement limitée).

» La covariance entre Y; et Y;_1 est non nulle : v(1) = \po?.
» Mais cette dépendance est de courte mémoire : y(h) = 0 pour |h| > 1.

» Ce processus est appelé MA(1) (moyenne mobile d'ordre 1).
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Fonction d'autocorrélation
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Innovation d'un processus

» Si (X, t € Z) est un processus stochastique stationnaire au second ordre, on
définit son innovation par :
Et = Xt — Xik

ol X est la régression linéaire de X; sur son passé (Xs,s < t).

» X est la meilleure prévision (linéaire) de X; basée sur I'ensemble d'information
L= {Xi 1, Xsa,...}.

» Par construction, |'innovation e; est non corrélée avec le passé de X : elle peut
étre interprétée comme une erreur de prévision.

» On peut montrer que si (X;,t € Z) est stationnaire au second ordre, alors son
innovation est un bruit blanc.
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Fonction d'autocorrélation

» La fonction d’autocorrélation est définie par :

» p(h) mesure la corrélation entre X; et Xy, (ou X;_p) :

p(h) = Corr(X¢, Xi1p)

» La fonction d'autocorrélation est une normalisation de la fonction
d'autocovariance. Elle hérite de ses propriétés : parité et positivité.
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Exemple
» Soit (e¢,t € Z) un bruit blanc. On définit le processus (X;,t € Z) :

Xt =€t — €112

» La fonction d'autocovariance est :

202 sih=0
v(h) =4 —0? sih=+12
0 sinon
» La fonction d'autocorrélation est :
1 sih=20
p(h) =< —% sih==+12
0 sinon
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Matrice d'autocorrélation et contraintes
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Matrice d'autocorrélation

» La matrice d’autocorrélation d'ordre m contient les corrélations entre m X

successifs © Xy, Xii1, -0, Xetm—1-
1 p(1) p(2) p(m —1)
p(1) 1 p(1) p(m —2)
Rm)= | »r(2) p(1) 1 p(m — 3)
p(m—1) p(m—2) p(m—3) 1

» La positivité de la fonction p(h) implique que R(m) est une matrice définie
positive :
aR(m)a>0 VaecR™a#0
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Contraintes sur |'autocorrélation d'ordre 1

» |R(m)| > 0 pour tout m € N*.
» Application pour m =2 :

R2)|> 0o ‘p(ll) f’“)’ S0e1-p(1)2>0

» L’'autocorrélation d'ordre 1 doit &tre strictement inférieure a 1 en valeur absolue :

lp(D] <1
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Contraintes sur |'autocorrélation d'ordre 2

» Application pour m =3 :

» Aprés calcul du déterminant, on obtient la contrainte :

» Les valeurs possibles de p(2) sont contraintes par p(1) :

p(2) € [2p(1)* —1,1)
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Autocorrélation partielle
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Prévision linéaire

» Soit (X¢,t € Z) un processus stochastique stationnaire au second ordre.

» On s'intéresse a la meilleure prévision linéaire de X; étant données les K valeurs
précédentes : X; 1, Xy o,..., Xi_Kk.

» En supposant E[X;] =0 :

EX¢|Xi—1,..., Xi—k] = agK)th + G;K)thz + -+ ag()Xt—K

> Le vecteur alf) = (agK),agK), .. .,a%())’ est donné par :
p(1)
p(K)
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Coefficient de corrélation partielle

» Le coefficient de corrélation partielle est :

r(K) = al®)

Il mesure le lien entre X; et X;_ i une fois que I'on a purgé I'effet de
X1, Xp—9,. ., X K11

> Les fonctions d'autocorrélation et d'autocorrélation partielle sont équivalentes :
» r(K) est une fonction de (p(1),...,p(K))

> Inversement, on peut déduire p(K) de (r(1),r(2),...,7(K))
» Pour K =1: agl) =r(1) = p(1).
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Expression explicite de |'autocorrélation partielle

» En utilisant la structure par blocs de la matrice, on peut montrer :

r(1) = p(1)
o2~ p(1?
A T

» Plus généralement, on peut obtenir une expression explicite de 7(K) en exploitant
la structure de la matrice d'autocorrélation.
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Plan

Densité spectrale
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Introduction a I'approche fréquentielle

» Une facon alternative de caractériser un processus stochastique est d'étudier la
densité spectrale.

» Cette approche est équivalente a la fonction d’autocovariance.

» Plutdt que d'aborder un processus stochastique dans le domaine temporel, on
s'intéresse au domaine des fréquences.

» On considére un processus de la forme :

o0
X = E i€t—;
i—0

ot (g4,t € Z) ~ BB(0,0?) et (a;) est absolument sommable.
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Fonction d'autocovariance du processus X
Calcul de ~(h) : Pour h > 0,

V(h) = COV(Xta Xt—h) = Cov Z A;E¢—7q, Z aj€t_h_j

0o o0
E E a]COV Et—iyEt—h— ])

=0 j=0

La covariance Cov(e;—i, e¢—p—;) est non nulle uniquement sit —i =t —h —j, ie,
j=1—h.

Donc pour h > 0 :
oo o0
2 2
h)=o E a;ai_p =0 g Qi ha;
i=h i=0

Par parité : y(—h) = y(h).
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Sommabilité absolue de v(h)

Théoreme
Si (a;) est absolument sommable, alors (h) est absolument sommable.

Démonstration :

+oo
> )= Z Zaz iy |
h=—00 h=—o0
+oo o
<o® Y > laillagm|
h=—o00 1=0

En échangeant les sommes et en posant j =i+ |h| :

“+o00 o0 o0 9] 2
S <ot S a3 Jay = o (zw) <o
h==o0 =0  j=0 i=0

La fonction d'autocovariance doit donc converger suffisament rapidement vers zéro.
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Définition de la densité spectrale
» La densité spectrale du processus (X;,t € Z) est la fonction réelle définie par :

1 .
f@) = 5= 3 e
h=—00

pour tout w € R.
» Cette fonction existe car y(h) est absolument sommable.

» On peut montrer que :

flw) = 10) + %Zy(h) cos(wh)

h=1

» La densité spectrale est une fonction continue, périodique et symétrique.
@@ el18cd8d — 54/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

La densité spectrale est a valeurs réelles

> La définition f(w) = 5= 2 y(h)e~™" fait intervenir des exponentielles
complexes. Montrons que f(w) e R,

» On regroupe les termes symétriques et on utilise y(—h) = y(h) :

0+ S ()

flw) =

» Or ¢ wh 4 giwh — 2 cos(wh), d'ou :

1 oo
f(w) —72— —Z ) cos(wh)
h=1

:1
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Symétrie de la densité spectrale

> La représentation en cosinus montre immédiatement que f est une fonction paire :

f) = B0 LS ) cos(—oh) = £(w)

h=1

car cos(—x) = cos(x).
» De plus, f est 27-périodique car cos(wh) est 2m-périodique en w.

» En combinant parité et périodicité, il suffit de connaitre f sur [0, 7] pour la
connaitre partout.

> (C'est pourquoi on représente généralement la densité spectrale sur I'intervalle
[0, 7].
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Equivalence avec la fonction d'autocovariance

> La densité spectrale et la fonction d’autocovariance sont équivalentes.
» De I'autocovariance a la densité spectrale : définition de f(w).

» De la densité spectrale a I'autocovariance :

v(h) = ' f(w) cos(wh) dw

» En particulier, la variance s’exprime comme une intégrale de la densité spectrale :

10) = [ f(w)dw

—Tr
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De la densité spectrale a |'autocovariance

» On part de la définition et on intégre contre ei“k :

™ . . .
f(w)ezwk dw = / e—zwhezwk dw

o _

™ h——oo

» En intervertissant somme et intégrale :
+00

:2i Z ”y(h)/ eiw(kfh) dw
™

—T

> Or [7 k=) du = 2 si k = h, et 0 sinon (orthogonalité). Donc tous les
termes s'annulent sauf celui ot h =k :

™

(k)= [ flw)et dw

—T

@@ el18cd8d — 58/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Orthogonalité des exponentielles complexes

> Posons n =k — h et calculons [™ €™ dw pour n # 0.

» En utilisant €™ = cos(nw) + isin(nw) :

/W oos(ri) dio = [sm(nw)]; _ sin(nm) —sin(—nm) _

n n

—T

car sin(nm) = 0 pour tout n € Z*.

» De méme :

/W sin(rs) dos — [_ cos(nw) L _ cos(nm) —ncos(—mr) 4

—Tr

» Sin=0: ffﬂei'o'”dw:fjﬂldw:%r.
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Exemple : Densité spectrale d'un bruit blanc
» Soit (X¢,t € Z) une suite de variables aléatoires i.i.d. d'espérance nulle et de
variance o2 (bruit blanc).

» La fonction d'autocovariance est :

0?2 sih=0
v(h) = .
0  sinon
» La densité spectrale est donc :
2
o
fw) = o

> La densité spectrale est constante : toutes les fréquences contribuent également a

la variance du processus. C'est pourquoi on parle de bruit blanc.
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Réciproque

» Si la densité spectrale est plate (constante), alors le processus associé est un bruit
blanc.

» Démonstration : Supposons que f(w) = k > 0 pour tout w. Alors :

& -2 ih=0
v(h) = / Kk cos(wh) dw = {H i S!
- 0 sinon

» (X¢,t € Z) est bien un bruit blanc de variance 27k. O
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Interprétation de la densité spectrale

» La densité spectrale f(w) mesure la contribution de la fréquence w a la variance
totale du processus :

10) = [ fwyaw=2 [ ) do

» Un pic dans f(w) a la fréquence wy indique une composante cyclique dominante
de période :

_ o

T (en nombre de périodes d'échantillonnage)

wo

» Exemples :
> wy =7 = T =2 : oscillation a la fréequence maximale (alternance)

» wy=7/6 = T =12 : cycle annuel pour des données mensuelles

> wy~0 =T — oo : composante de trés basse fréquence (tendance)
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|dentification des cycles
» En pratique, on estime f(w) a partir des données (périodogramme) et on

recherche les pics.

» Les hautes fréquences (w proche de 7) correspondent aux fluctuations rapides,
de courte période.

» Les basses fréquences (w proche de 0) correspondent aux mouvements lents, de
longue période.

» Un processus avec f(w) concentré prés de w = 0 est persistant : les chocs ont des
effets durables.

» Un processus avec f(w) concentré prés de w = 7 est antipersistant : tendance au
retour a la moyenne rapide.
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Densité spectrale d'une transformation linéaire

» Soit (X¢,t € Z) un processus stationnaire de densité spectrale fx(w). Soit (a;)i>0
une suite absolument sommable. Alors le processus (Y;,t € Z) défini par :

o

Y, = Z a; Xy

i=0
a pour densité spectrale :

2

fr(w) = fx(w)

o0
§ :aie—zwz
=0
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Plan

Opérateur retard
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Définition de |'opérateur retard

» L'opérateur retard L transforme un processus (X¢,t € Z) en un processus
(Yy,t € Z) tel que :
Yi=LX: =X

» Cet opérateur est linéaire et inversible.

» Son inverse est |'opérateur avance F' :

Zy=FX; =X

» Par construction : L-F=F-L=1.

» En appliquant plusieurs fois |'opérateur retard :

LFX, = X, &
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Polynémes en L

» On peut définir des polyndmes en L :

p p
Z aiLi Xt = Z aiXt,i
=0 =0

» On peut aussi définir des séries en L (ou F'). On doit bien sir se restreindre a des
processus stationnaires pour que cela ait un sens.

» Si (X¢,t € Z) est stationnaire au second ordre et (a;);>0 absolument sommable,

alors :
o o
Y, = E a; X = g a; L' | X;
i=0 i=0

est aussi stationnaire.
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Propriétés des séries en L

» Addition :

(Z a; L' + Z bi LZ> X; = Z(ai + b)) L' X,

=0

ol la suite (a; + b;) est absolument sommable.

» Multiplication :

oo
(Z aiLi> Zb | X, = chL’th
i=0
ol ¢ = Zf:o a;bi_; et la suite (cj) est absolument sommable.
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Démonstration de la multiplication (1/2)
> Notons A(L) = >"° a;L" et B(L) = >0 b L.

» Calculons A(L)B(L)X; :

A(L)B(L)X; = A(L) ibjxt_j iazibjxt i
§=0

i=0  j=0

» En posant k =i + j et en réorganisant :
ALBLX =Y (zazbk ) o zckxt k
k=0

ol ¢ = Zf:o a;bi_; est le produit de convolution.

@@ el18cd8d — 69/83 — 27 janvier 2026


https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series

Démonstration de la multiplication (2/2)
» |l reste @ montrer que la suite (c) est absolument sommable.

» Ona:
00 00 k oo k
Dolel =20 1> aibei| <D 0> laillbiil
k=0 k=0 |i=0 k=0 i=0

» En changeant I'ordre de sommation :

oo oo oo
> et < () (o) <
k=0 =0 =0
car (a;) et (b;) sont absolument sommables. O

» Le produit de deux séries absolument sommables est absolument sommable :

I'ensemble des séries en L forme une algébre.
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Inversibilité du polynéme (1 — AL)
» Le polyndme retard ¢(L) =1 — AL est inversible dés lors que || < 1.

» Démonstration : Posons a; = A’ pour i > 0. La suite (a;) est absolument
sommable (série géométrique convergente car |A\| < 1).

» En multipliant par ¢(L) =1 — AL :

=0 1=0 =0
= 1+§:AiLi—iAiU =1
i=1 =1
> Ainsi (1 —AL)~1 =32 AL O
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Interprétation

» Soit (X¢,t € Z) un processus stationnaire au second ordre.

» Alors le processus (Y;,t € Z) défini par :

o0
i
Y, = E ANXii
i=0
est I'unique processus stationnaire au second ordre solution de |'équation :

Zy — >\Zt—1 =X; ~ (]. — )\L)Zt =X;

» |l existe d'autres solutions (une infinité), mais elles ne sont pas stationnaires au
second ordre.

b
1-X-
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Inversion d'un polynéme général

» Soit la fonction polynomiale :

D(2) =1+ 12+ paz? 4 -+ ¢p2P

dont les racines z; = /\L sont plus grandes que 1 en module.
J
> |l existe une série 1(z) = > o0 1;2" telle que ¢(z) - ¥(z) = 1.

> Le polyndme retard ¢(L) = 1+ ¢1 L + ¢oL? + - - - + ¢, LP est inversible et admet
pour inverse ¢(L).
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Méthode d'inversion par identification (1/2)
» On cherche ¢(z) = Y00, iz" tel que ¢(z) - () = 1.

» Développons le produit :

(1+ 12+ ¢22” + -+ + ¢pa) (o + 12 + hp2” 4 -++) = 1

» En regroupant par puissances de z :

ZO : ’lﬂo =1
oYt =0 = Yr=—¢
220 et dii oo =0 = o= —g1h — o
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Méthode d'inversion par identification (2/2)

» Formule de récurrence générale : Pour k > 1 :

min(k,p)

bh=— Y Gt
j=1

avec la convention g = 1 et ¢; = 0 pour j > p.

» Exemple : Pour ¢(L) =1 —0.8L (AR(1) avec ¢ = —0.8) :
o =1
Y1 =—(-08)-1=0.8
Py = —(—0.8) - 0.8 = 0.64 = 0.8*
¥ = 0.8%

> On retrouve (1 —0.8L)~1 =>72° j0.8F L.
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Cas des racines unitaires : le probléme

» Que se passe-t-il si le polynéme ¢(z) admet une ou plusieurs racines de module 1
(racines unitaires) ?

» Si ¢(z) admet une racine zy avec |zg| = 1, alors le polynéme retard ¢(L) n'est pas
inversible au sens usuel : il n'existe pas de série ¢)(L) = > 1); L" avec (¢;)
absolument sommable telle que ¢(L)y (L) = 1.

» Exemple : Le polynéme ¢(L) =1 — L a pour racine z = 1 (racine unitaire).

> L'inverse formel serait Y oo, L?, mais la suite (1,1,1,...) n’est pas absolument
sommable.
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Factorisation avec racines unitaires
» Supposons que ¢(z) admette k racines unitaires. On peut factoriser :

(2) = (1-2)"¢(2)

ol ¢(z) est un polyndme dont toutes les racines sont de module > 1.

» En termes d'opérateur retard :

o(L) = (1 - L)*¢(L)

> Remarques :
» (1 — L) est I'opérateur de différenciation : (1 - L)X; = X; — X;_1 = AX,

» (1 — L)* correspond a la différenciation d'ordre k : A¥X;

» (L) est inversible car ses racines sont de module > 1
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Inversion partielle

» Bien que ¢(L) ne soit pas globalement inversible, on peut écrire :
¢(L) = (1 - L)"é(L)
et inverser la partie ¢(L) :

S(L) = d(L) =Y il
i=0
avec (1);) absolument sommable.

» Si¢(L)Y; = Xy, alors :
1-L*(L)Y; =X, = (1-L"Y;=14(L)X,

> On peut exprimer A*Y; en fonction de X;, mais pas Y; directement.
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Processus intégrés

» Un processus (Y;) est dit intégré d’ordre k, noté Y; ~ I(k), si :
» Y; n'est pas stationnaire

> AFY; = (1 — L)*Y; est stationnaire

» Exemple : La marche aléatoire Y; = Y; 1 + &; oti &, ~ BB(0,?).
» Ona (1—L)Y; =¢, donc AY; = ¢, est stationnaire. Ainsi Y; ~ I(1).

» De nombreuses séries économiques (PIB, prix, indices boursiers) sont I(1) : leur
niveau n'est pas stationnaire, mais leur taux de croissance |est.
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Résolution avec racines unitaires

» Si ¢(L) a k racines unitaires, on ne peut pas inverser ¢(L) directement, mais on
peut :

> 1. Différencier le processus k fois pour éliminer les racines unitaires :

HLY; =X, = LAY, =X,

> 2. Inverser ¢(L) (qui n'a plus de racines unitaires) :

AFY, = (L)X, = Zd;iXt—i
i=0

» 3. Intégrer k fois pour retrouver Y; (avec k constantes d'intégration).
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Interprétation des constantes d'intégration

> L'intégration introduit k constantes d’intégration qui correspondent aux
conditions initiales.

» Exemple pour k=1 : Si AY; = Z, ol Z; est connu, alors :
¢
Vi=Yo+ > Z
s=1
La constante Y est la condition initiale.
» Exemple pour k =2 : Si A%Y; = Z,, alors :
t

YVi=Yo+t - AYp+ Y (t—s+1)Z,

s=1

» Ces conditions initiales déterminent le niveau du processus mais n'affectent pas sa

dynamlque' @@ e18cd8d — 81/83 — 27 janvier 2026
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Conclusion sur les racines unitaires

> Les racines unitaires empéchent I'inversion directe mais permettent une
représentation du processus différencié. C'est la base de I'analyse des séries non
stationnaires.

» Points clés :

» Un polyndme avec k racines unitaires ne peut pas étre inversé en une série
absolument sommable

> On factorise : ¢(L) = (1 — L)*®(L) ot (L) est inversible
> Le processus différencié AFY; admet une représentation stationnaire

» Les k conditions initiales déterminent le niveau mais pas la dynamique
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Résumé

» Un processus stochastique est une suite de variables aléatoires.

» La stationnarité (au second ordre) simplifie considérablement |'inférence.

» La fonction d’autocovariance ~y(h) caractérise les dépendances.

» La fonction d’autocorrélation p(h) = v(h)/v(0) normalise les dépendances.
» L'autocorrélation partielle r(K) mesure le lien direct entre X; et X;_ .

» La densité spectrale f(w) donne une vision fréquentielle équivalente.

> L'opérateur retard L permet une écriture compacte des modéles.
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