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Définition d’un processus stochastique

▶ Un processus stochastique est une suite de variables aléatoires réelles {Xt}t∈Z.

▶ Une série temporelle est une réalisation d’un processus stochastique.

▶ Pour caractériser complètement un processus stochastique, il faut spécifier la
distribution jointe de (Xt1 , Xt2 , . . . , Xtn) pour tout (t1, t2, . . . , tn) ∈ Zn et pour
tout n ∈ N, avec ti ̸= tj pour tout i ̸= j.

▶ Il faut énormément d’information pour définir complètement un processus
stochastique.
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Processus linéaires

▶ Problème de l’inférence : Comment estimer les paramètres du processus
stochastique à partir d’une seule réalisation (série temporelle) ?

▶ Pour traiter ce problème, on se restreint aux processus linéaires : processus dont
les distributions jointes sont caractérisées par les moments d’ordre 1 et 2 :

µt = E[Xt]

γ(t, s) = Cov(Xt, Xs) = E [(Xt − µt)(Xs − µs)]
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Propriété de la fonction d’autocovariance

▶ Exercice : Montrer que γ(t, s) = E[XtXs]− µtµs.

▶ Démonstration :

γ(t, s) = E [(Xt − µt)(Xs − µs)]

= E [XtXs −Xtµs − µtXs + µtµs]

= E[XtXs]− E[Xt]µs − µtE[Xs] + µtµs

= E[XtXs]− µtµs − µtµs + µtµs

= E[XtXs]− µtµs □
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Le problème de l’estimation avec une seule réalisation
▶ Exemple industriel : Supposons qu’un processus stochastique décrit le diamètre

d’un câble sortant d’une machine à intervalles réguliers (chaque mètre).

▶ Une série temporelle = mesures sur un câble de 1 km (1000 observations).

▶ Si l’on fabrique K câbles avec la même machine, on peut estimer µt :

µ̂t =
1

K

K∑
j=1

X
(j)
t

où X(j)
t est le diamètre du câble j au t-ème mètre.

▶ Problème pour l’économiste : On n’observe qu’une seule série temporelle pour le
PIB... On ne peut pas « remonter le temps » pour obtenir une nouvelle réalisation.
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Définition de la stationnarité (au sens strict)

▶ Le processus stochastique (Xt, t ∈ Z) est stationnaire si et seulement si la
distribution jointe de (Xt1 , Xt2 , . . . , Xtn) est identique à la distribution jointe de
(Xt1+h, Xt2+h, . . . , Xtn+h) pour tout (t1, t2, . . . , tn) ∈ Zn, pour tout n ∈ N, pour
tout h ∈ Z, avec ti ̸= tj pour i ̸= j.

▶ La distribution jointe est invariante dans le temps.

▶ Pour les processus linéaires, nous n’avons pas besoin d’une définition si générale.
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Stationnarité au second ordre

▶ Le processus stochastique (Xt, t ∈ Z) est dit stationnaire au second ordre si et
seulement si ses moments d’ordre 1 et 2 sont invariants :

E[Xt] = µ ∀t

V[Xt] = γ0 ∀t

Cov(Xt, Xs) = γ(t− s)

▶ Un processus stochastique (Xt, t ∈ Z) stationnaire au second ordre appartient à
l’espace des variables aléatoires de carré intégrable (L2). La norme dans cet espace
est définie par :

∥X∥ =
√
E[X2]
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Conséquences de la stationnarité au second ordre

▶ Si le processus est stationnaire au second ordre, alors :

Cov(Xt, Xt−h) = γ(h) ∀t

La covariance ne dépend pas du temps mais seulement de la distance h entre Xt

et Xs.

▶ En nous restreignant aux processus stochastiques stationnaires, nous avons
considérablement diminué le nombre de paramètres à estimer.

▶ Mais pour pouvoir effectivement estimer les paramètres (par exemple l’espérance),
il faut aussi que le processus soit ergodique.
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Ergodicité : intuition

▶ Le concept d’ergodicité est techniquement difficile, mais l’idée intuitive est que des
variables aléatoires doivent être d’autant moins corrélées qu’elles sont éloignées
dans le temps.

▶ Si on utilise une moyenne empirique pour estimer l’espérance :

X̄n =
1

n

n∑
t=1

Xt

alors E[X̄n] = µ (sans biais) et surtout V[X̄n] −−−→
n→∞

0, assurant la convergence de

X̄n vers µ.

▶ Question clé : Sous quelles conditions sur γ(h) a-t-on V[X̄n] → 0 ?
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Variance de la moyenne empirique (1/4)
▶ Calculons la variance de X̄n = 1

n

∑n
t=1Xt :

V[X̄n] = V

[
1

n

n∑
t=1

Xt

]
=

1

n2
V

[
n∑

t=1

Xt

]

▶ En développant la variance de la somme :

V

[
n∑

t=1

Xt

]
= E

( n∑
t=1

(Xt − µ)

)2
 =

n∑
t=1

n∑
s=1

Cov(Xt, Xs)

▶ Par stationnarité, Cov(Xt, Xs) = γ(t− s), donc :

V

[
n∑

t=1

Xt

]
=

n∑
t=1

n∑
s=1

γ(t− s)
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Variance de la moyenne empirique (2/4)

▶ On a V

[
n∑

t=1

Xt

]
=

n∑
t=1

n∑
s=1

γ(t− s).

▶ Posons h = t− s. Pour chaque valeur de h ∈ {−(n− 1), . . . , n− 1}, comptons le
nombre de couples (t, s) tels que t− s = h :
▶ Si h = 0 : les couples (1, 1), (2, 2), . . . , (n, n) ⇒ n termes

▶ Si h = 1 : les couples (2, 1), (3, 2), . . . , (n, n− 1) ⇒ n− 1 termes

▶ Plus généralement, pour h ∈ {−(n− 1), . . . , n− 1} : n− |h| termes

▶ Donc :
n∑

t=1

n∑
s=1

γ(t− s) =

n−1∑
h=−(n−1)

(n− |h|)γ(h)
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Variance de la moyenne empirique (3/4)
▶ Nous avons donc :

V[X̄n] =
1

n2

n−1∑
h=−(n−1)

(n− |h|)γ(h)

▶ En utilisant la parité γ(h) = γ(−h) :

V[X̄n] =
1

n2

[
nγ(0) + 2

n−1∑
h=1

(n− h)γ(h)

]

▶ Résultat :

V[X̄n] =
γ(0)

n
+

2

n

n−1∑
h=1

(
1− h

n

)
γ(h)
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Variance de la moyenne empirique (4/4)

▶ Cas 1 (bruit blanc) : Si γ(h) = 0 pour h ̸= 0 :

V[X̄n] =
γ(0)

n
=
σ2

n
−−−→
n→∞

0 ✓

▶ Cas 2 (autocovariance constante) : Si γ(h) = c > 0 pour tout h :

V[X̄n] =
c

n
+

2c

n

[
n− 1− n− 1

2

]
−−−→
n→∞

c ̸= 0 ×

▶ La variance ne converge pas vers 0 : l’estimation est impossible.
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Condition suffisante de convergence
▶ Si la fonction d’autocovariance est absolument sommable :

+∞∑
h=−∞

|γ(h)| < +∞

alors V[X̄n] → 0 quand n→ ∞.

▶ Démonstration : Si
∑

h |γ(h)| <∞, alors :

V[X̄n] ≤
1

n

n−1∑
h=−(n−1)

|γ(h)| ≤ 1

n

+∞∑
h=−∞

|γ(h)| −−−→
n→∞

0

▶ Cette condition implique que γ(h) → 0 suffisamment vite quand |h| → ∞. Elle est
satisfaite par la plupart des modèles ARMA.
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Comportement asymptotique de la variance

▶ Quand n→ ∞, on peut montrer que :

n · V[X̄n] −−−→
n→∞

+∞∑
h=−∞

γ(h) = 2πf(0)

où f(ω) est la densité spectrale du processus.

▶ La quantité
∑

h γ(h) = 2πf(0) est appelée variance de long terme.

▶ Interprétation :
▶ Si

∑
h γ(h) > γ(0) : la dépendance positive augmente la variance de X̄n.

▶ Si
∑

h γ(h) < γ(0) : la dépendance négative diminue la variance de X̄n.
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Fonction d’autocovariance

▶ On note γ : Z → R, h 7→ γ(h) la fonction d’autocovariance d’un processus
stochastique stationnaire au second ordre.

▶ Propriétés :
1. γ(0) = V[Xt] ≥ 0

2. γ(h) = γ(−h) (parité)

3. |γ(h)| ≤ γ(0) pour tout h

4. γ est une fonction positive (au sens de la positivité définie)
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Démonstration de la parité

▶ Propriété : γ(h) = γ(−h).

▶ Démonstration : Il suffit de remarquer que

γ(−h) = Cov(Xt, Xt+h)

= E [(Xt − µ)(Xt+h − µ)]

= E [(Xt+h − µ)(Xt − µ)]

= γ(h) □
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Inégalité de Cauchy-Schwarz pour la covariance (1/2)
▶ Pour deux variables aléatoires U et V de carré intégrable :

|Cov(U, V )| ≤
√
V(U) ·

√
V(V )

▶ Démonstration : Sans perte de généralité, supposons E[U ] = E[V ] = 0. Alors
Cov(U, V ) = E[UV ] et V(U) = E[U2].

▶ Pour tout λ ∈ R, la variable aléatoire (U + λV )2 est positive, donc :

E
[
(U + λV )2

]
≥ 0 ∀λ ∈ R

▶ En développant :
E[U2] + 2λE[UV ] + λ2E[V 2] ≥ 0
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Inégalité de Cauchy-Schwarz pour la covariance (2/2)
▶ Nous avons un trinôme en λ :

P (λ) = E[V 2]λ2 + 2E[UV ]λ+ E[U2] ≥ 0 ∀λ ∈ R

▶ Pour qu’un trinôme aλ2+ bλ+ c soit toujours ≥ 0, son discriminant doit être ≤ 0 :

∆ = 4E[UV ]2 − 4E[U2]E[V 2] ≤ 0

▶ En prenant la racine carrée et en revenant aux variables non centrées :

|Cov(U, V )| ≤
√
V(U) ·

√
V(V ) □
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Démonstration de |γ(h)| ≤ γ(0)

▶ Propriété : |γ(h)| ≤ γ(0) pour tout h.

▶ Cette propriété découle de l’inégalité de Cauchy-Schwarz.

▶ En appliquant cette inégalité à U = Xt et V = Xt−h :

|γ(h)| = |Cov(Xt, Xt−h)| ≤
√
V(Xt) ·

√
V(Xt−h)

▶ Par stationnarité, V(Xt) = V(Xt−h) = γ(0), donc :

|γ(h)| ≤
√
γ(0) ·

√
γ(0) = γ(0) □
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Interprétation et conséquences

▶ L’inégalité |γ(h)| ≤ γ(0) signifie que la covariance entre Xt et Xt−h ne peut
jamais dépasser (en valeur absolue) la variance du processus.

▶ Cas d’égalité : |γ(h)| = γ(0) si et seulement si Xt et Xt−h sont parfaitement
corrélés.

▶ En divisant par γ(0) > 0, on obtient :∣∣∣∣γ(h)γ(0)

∣∣∣∣ ≤ 1 ∀h

▶ Le ratio γ(h)/γ(0) est toujours compris entre −1 et 1. Ce ratio définit la fonction
d’autocorrélation ρ(h).
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Positivité de la fonction d’autocovariance

▶ Dire que la fonction d’autocovariance est positive ne veut pas dire que γ(h) ≥ 0
pour tout h. Cette propriété découle de la positivité de la variance.

▶ On sait que V [
∑n

i=1 aiXti ] ≥ 0 pour tout vecteur (a1, . . . , an).

▶ Supposons E[Xti ] = 0 pour tout i. Alors :

V

[
n∑

i=1

aiXti

]
=

n∑
i=1

n∑
j=1

aiajγ(ti − tj)

▶ Cette double somme doit être ≥ 0 pour tout vecteur a ̸= 0.
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Théorème de construction

▶ Si (Xt, t ∈ Z) est un processus stochastique stationnaire et si (ai)i≥0 est une suite
de nombres réels absolument sommable :

∞∑
i=0

|ai| < +∞

alors

Yt =

∞∑
i=0

aiXt−i

définit un nouveau processus stochastique stationnaire.
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Éléments de preuve (1/2)
▶ Si (Xt, t ∈ Z) est de carré intégrable, alors il en va de même pour (Yt, t ∈ Z).

▶ En effet :

∥Yt∥ =

∥∥∥∥∥
∞∑
i=0

aiXt−i

∥∥∥∥∥ ≤
∞∑
i=0

|ai| · ∥Xt−i∥ = ∥X∥
∞∑
i=0

|ai| < +∞

▶ L’espérance de (Yt, t ∈ Z) est :

E[Yt] = E

[ ∞∑
i=0

aiXt−i

]
=

∞∑
i=0

aiE[Xt−i] = µ

∞∑
i=0

ai = µY

▶ L’espérance est constante et ne dépend pas de t.
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Éléments de preuve (2/2)

▶ La fonction d’autocovariance de (Yt, t ∈ Z) est :

γY (h) = Cov(Yt, Yt−h)

= Cov

 ∞∑
i=0

aiXt−i,

∞∑
j=0

ajXt−h−j


=

∞∑
i=0

∞∑
j=0

aiajγX(h+ i− j)

▶ Les moments d’ordre 1 et 2 sont bien indépendants du temps. □
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Bruit blanc

▶ Soit (Xt, t ∈ Z) une suite de variables aléatoires indépendamment et
identiquement distribuées (bruit blanc) avec :

E[Xt] = 0 ∀t

V[Xt] = σ2 ∀t

γ(h) = 0 ∀h ̸= 0

▶ Ce processus stochastique est stationnaire.

▶ On note souvent : Xt ∼ BB(0, σ2) ou εt ∼ BB(0, σ2).
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Définition du processus MA(1)

▶ Définissons un nouveau processus stochastique (Yt, t ∈ Z) :

Yt = λXt + ρXt−1

▶ En termes du théorème précédent : a0 = λ, a1 = ρ, ai = 0 pour i /∈ {0, 1}.

▶ On montre facilement qu’il s’agit d’un processus stochastique stationnaire au
second ordre.
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Espérance du processus MA(1)

▶ L’espérance est nulle pour tout t :

E[Yt] = E[λXt + ρXt−1]

= λE[Xt] + ρE[Xt−1]

= λ · 0 + ρ · 0
= 0
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Variance du processus MA(1)

▶ La variance est finie et constante :

V[Yt] = V[λXt + ρXt−1]

= E
[
(λXt + ρXt−1)

2
]

(car E[Yt] = 0)

= E
[
λ2X2

t + 2λρXtXt−1 + ρ2X2
t−1

]
= λ2E[X2

t ] + 2λρE[XtXt−1]︸ ︷︷ ︸
=0 (indép.)

+ρ2E[X2
t−1]

= (λ2 + ρ2)σ2

cz e18cd8d – 35/83 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Fonction d’autocovariance du MA(1)

▶ Calculons la fonction d’autocovariance γ(h) = Cov(Yt, Yt−h) :

γ(h) = Cov(λXt + ρXt−1, λXt−h + ρXt−h−1)

= λ2Cov(Xt, Xt−h) + λρCov(Xt, Xt−h−1)

+ ρλCov(Xt−1, Xt−h) + ρ2Cov(Xt−1, Xt−h−1)

▶ Au total :

γ(h) =


(λ2 + ρ2)σ2 si h = 0

λρσ2 si h = ±1

0 sinon
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Interprétation

▶ Contrairement au processus d’origine (Xt, t ∈ Z) (bruit blanc), le processus
(Yt, t ∈ Z) admet de la dépendance (relativement limitée).

▶ La covariance entre Yt et Yt−1 est non nulle : γ(1) = λρσ2.

▶ Mais cette dépendance est de courte mémoire : γ(h) = 0 pour |h| > 1.

▶ Ce processus est appelé MA(1) (moyenne mobile d’ordre 1).
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Innovation d’un processus

▶ Si (Xt, t ∈ Z) est un processus stochastique stationnaire au second ordre, on
définit son innovation par :

εt = Xt −X∗
t

où X∗
t est la régression linéaire de Xt sur son passé (Xs, s < t).

▶ X∗
t est la meilleure prévision (linéaire) de Xt basée sur l’ensemble d’information

It = {Xt−1, Xt−2, . . .}.

▶ Par construction, l’innovation εt est non corrélée avec le passé de X : elle peut
être interprétée comme une erreur de prévision.

▶ On peut montrer que si (Xt, t ∈ Z) est stationnaire au second ordre, alors son
innovation est un bruit blanc.
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Fonction d’autocorrélation

▶ La fonction d’autocorrélation est définie par :

ρ(h) =
γ(h)

γ(0)

▶ ρ(h) mesure la corrélation entre Xt et Xt+h (ou Xt−h) :

ρ(h) = Corr(Xt, Xt+h)

▶ La fonction d’autocorrélation est une normalisation de la fonction
d’autocovariance. Elle hérite de ses propriétés : parité et positivité.
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Exemple
▶ Soit (εt, t ∈ Z) un bruit blanc. On définit le processus (Xt, t ∈ Z) :

Xt = εt − εt−12

▶ La fonction d’autocovariance est :

γ(h) =


2σ2 si h = 0

−σ2 si h = ±12

0 sinon

▶ La fonction d’autocorrélation est :

ρ(h) =


1 si h = 0

−1
2 si h = ±12

0 sinon
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Matrice d’autocorrélation

▶ La matrice d’autocorrélation d’ordre m contient les corrélations entre m X
successifs : Xt, Xt+1, . . . , Xt+m−1.

R(m) =


1 ρ(1) ρ(2) · · · ρ(m− 1)
ρ(1) 1 ρ(1) · · · ρ(m− 2)
ρ(2) ρ(1) 1 · · · ρ(m− 3)

...
...

...
. . .

...
ρ(m− 1) ρ(m− 2) ρ(m− 3) · · · 1



▶ La positivité de la fonction ρ(h) implique que R(m) est une matrice définie
positive :

a′R(m)a > 0 ∀a ∈ Rm,a ̸= 0
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Contraintes sur l’autocorrélation d’ordre 1

▶ |R(m)| > 0 pour tout m ∈ N∗.

▶ Application pour m = 2 :

|R(2)| > 0 ⇔
∣∣∣∣ 1 ρ(1)
ρ(1) 1

∣∣∣∣ > 0 ⇔ 1− ρ(1)2 > 0

▶ L’autocorrélation d’ordre 1 doit être strictement inférieure à 1 en valeur absolue :

|ρ(1)| < 1
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Contraintes sur l’autocorrélation d’ordre 2

▶ Application pour m = 3 :

|R(3)| > 0 ⇔

∣∣∣∣∣∣
1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣ > 0

▶ Après calcul du déterminant, on obtient la contrainte :

▶ Les valeurs possibles de ρ(2) sont contraintes par ρ(1) :

ρ(2) ∈
[
2ρ(1)2 − 1, 1

)
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Prévision linéaire
▶ Soit (Xt, t ∈ Z) un processus stochastique stationnaire au second ordre.

▶ On s’intéresse à la meilleure prévision linéaire de Xt étant données les K valeurs
précédentes : Xt−1, Xt−2, . . . , Xt−K .

▶ En supposant E[Xt] = 0 :

E[Xt|Xt−1, . . . , Xt−K ] = a
(K)
1 Xt−1 + a

(K)
2 Xt−2 + · · ·+ a

(K)
K Xt−K

▶ Le vecteur a(K) = (a
(K)
1 , a

(K)
2 , . . . , a

(K)
K )′ est donné par :

a(K) = R(K)−1


ρ(1)
ρ(2)

...
ρ(K)


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Coefficient de corrélation partielle

▶ Le coefficient de corrélation partielle est :

r(K) = a
(K)
K

Il mesure le lien entre Xt et Xt−K une fois que l’on a purgé l’effet de
Xt−1, Xt−2, . . . , Xt−K+1.

▶ Les fonctions d’autocorrélation et d’autocorrélation partielle sont équivalentes :
▶ r(K) est une fonction de (ρ(1), . . . , ρ(K))

▶ Inversement, on peut déduire ρ(K) de (r(1), r(2), . . . , r(K))

▶ Pour K = 1 : a(1)1 = r(1) = ρ(1).

cz e18cd8d – 48/83 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Expression explicite de l’autocorrélation partielle

▶ En utilisant la structure par blocs de la matrice, on peut montrer :

r(1) = ρ(1)

r(2) =
ρ(2)− ρ(1)2

1− ρ(1)2

▶ Plus généralement, on peut obtenir une expression explicite de r(K) en exploitant
la structure de la matrice d’autocorrélation.
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Introduction à l’approche fréquentielle

▶ Une façon alternative de caractériser un processus stochastique est d’étudier la
densité spectrale.

▶ Cette approche est équivalente à la fonction d’autocovariance.

▶ Plutôt que d’aborder un processus stochastique dans le domaine temporel, on
s’intéresse au domaine des fréquences.

▶ On considère un processus de la forme :

Xt =

∞∑
i=0

aiεt−i

où (εt, t ∈ Z) ∼ BB(0, σ2) et (ai) est absolument sommable.
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Fonction d’autocovariance du processus X
Calcul de γ(h) : Pour h ≥ 0,

γ(h) = Cov(Xt, Xt−h) = Cov

 ∞∑
i=0

aiεt−i,

∞∑
j=0

ajεt−h−j


=

∞∑
i=0

∞∑
j=0

aiajCov(εt−i, εt−h−j)

La covariance Cov(εt−i, εt−h−j) est non nulle uniquement si t− i = t− h− j, i.e.,
j = i− h.

Donc pour h ≥ 0 :

γ(h) = σ2
∞∑
i=h

aiai−h = σ2
∞∑
i=0

ai+hai

Par parité : γ(−h) = γ(h).
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Sommabilité absolue de γ(h)

Théorème
Si (ai) est absolument sommable, alors γ(h) est absolument sommable.
Démonstration :

+∞∑
h=−∞

|γ(h)| =
+∞∑

h=−∞

∣∣∣∣∣σ2
∞∑
i=0

aiai+|h|

∣∣∣∣∣
≤ σ2

+∞∑
h=−∞

∞∑
i=0

|ai||ai+|h||

En échangeant les sommes et en posant j = i+ |h| :

+∞∑
h=−∞

|γ(h)| ≤ σ2
∞∑
i=0

|ai|
∞∑
j=0

|aj | = σ2

( ∞∑
i=0

|ai|

)2

< +∞

La fonction d’autocovariance doit donc converger suffisament rapidement vers zéro.
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Définition de la densité spectrale
▶ La densité spectrale du processus (Xt, t ∈ Z) est la fonction réelle définie par :

f(ω) =
1

2π

+∞∑
h=−∞

γ(h)e−iωh

pour tout ω ∈ R.

▶ Cette fonction existe car γ(h) est absolument sommable.

▶ On peut montrer que :

f(ω) =
γ(0)

2π
+

1

π

∞∑
h=1

γ(h) cos(ωh)

▶ La densité spectrale est une fonction continue, périodique et symétrique.
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La densité spectrale est à valeurs réelles
▶ La définition f(ω) = 1

2π

∑+∞
h=−∞ γ(h)e−iωh fait intervenir des exponentielles

complexes. Montrons que f(ω) ∈ R.

▶ On regroupe les termes symétriques et on utilise γ(−h) = γ(h) :

f(ω) =
1

2π

[
γ(0) +

∞∑
h=1

γ(h)
(
e−iωh + eiωh

)]

▶ Or e−iωh + eiωh = 2 cos(ωh), d’où :

f(ω) =
γ(0)

2π
+

1

π

∞∑
h=1

γ(h) cos(ωh) ∈ R
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Symétrie de la densité spectrale

▶ La représentation en cosinus montre immédiatement que f est une fonction paire :

f(−ω) = γ(0)

2π
+

1

π

∞∑
h=1

γ(h) cos(−ωh) = f(ω)

car cos(−x) = cos(x).

▶ De plus, f est 2π-périodique car cos(ωh) est 2π-périodique en ω.

▶ En combinant parité et périodicité, il suffit de connaître f sur [0, π] pour la
connaître partout.

▶ C’est pourquoi on représente généralement la densité spectrale sur l’intervalle
[0, π].
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Équivalence avec la fonction d’autocovariance
▶ La densité spectrale et la fonction d’autocovariance sont équivalentes.

▶ De l’autocovariance à la densité spectrale : définition de f(ω).

▶ De la densité spectrale à l’autocovariance :

γ(h) =

∫ π

−π
f(ω) cos(ωh) dω

▶ En particulier, la variance s’exprime comme une intégrale de la densité spectrale :

γ(0) =

∫ π

−π
f(ω) dω
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De la densité spectrale à l’autocovariance
▶ On part de la définition et on intègre contre eiωk :∫ π

−π
f(ω)eiωk dω =

1

2π

∫ π

−π

+∞∑
h=−∞

γ(h)e−iωheiωk dω

▶ En intervertissant somme et intégrale :

=
1

2π

+∞∑
h=−∞

γ(h)

∫ π

−π
eiω(k−h) dω

▶ Or
∫ π
−π e

iω(k−h) dω = 2π si k = h, et 0 sinon (orthogonalité). Donc tous les
termes s’annulent sauf celui où h = k :

γ(k) =

∫ π

−π
f(ω)eiωk dω
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Orthogonalité des exponentielles complexes
▶ Posons n = k − h et calculons

∫ π
−π e

inω dω pour n ̸= 0.

▶ En utilisant einω = cos(nω) + i sin(nω) :∫ π

−π
cos(nω) dω =

[
sin(nω)

n

]π
−π

=
sin(nπ)− sin(−nπ)

n
= 0

car sin(nπ) = 0 pour tout n ∈ Z∗.

▶ De même :∫ π

−π
sin(nω) dω =

[
−cos(nω)

n

]π
−π

= −cos(nπ)− cos(−nπ)
n

= 0

▶ Si n = 0 :
∫ π
−π e

i·0·ω dω =
∫ π
−π 1 dω = 2π.
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Exemple : Densité spectrale d’un bruit blanc
▶ Soit (Xt, t ∈ Z) une suite de variables aléatoires i.i.d. d’espérance nulle et de

variance σ2 (bruit blanc).

▶ La fonction d’autocovariance est :

γ(h) =

{
σ2 si h = 0

0 sinon

▶ La densité spectrale est donc :

f(ω) =
σ2

2π

▶ La densité spectrale est constante : toutes les fréquences contribuent également à
la variance du processus. C’est pourquoi on parle de bruit blanc.
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Réciproque

▶ Si la densité spectrale est plate (constante), alors le processus associé est un bruit
blanc.

▶ Démonstration : Supposons que f(ω) = κ > 0 pour tout ω. Alors :

γ(h) =

∫ π

−π
κ cos(ωh) dω =

{
κ · 2π si h = 0

0 sinon

▶ (Xt, t ∈ Z) est bien un bruit blanc de variance 2πκ. □
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Interprétation de la densité spectrale
▶ La densité spectrale f(ω) mesure la contribution de la fréquence ω à la variance

totale du processus :

γ(0) =

∫ π

−π
f(ω) dω = 2

∫ π

0
f(ω) dω

▶ Un pic dans f(ω) à la fréquence ω0 indique une composante cyclique dominante
de période :

T =
2π

ω0
(en nombre de périodes d’échantillonnage)

▶ Exemples :
▶ ω0 = π ⇒ T = 2 : oscillation à la fréquence maximale (alternance)

▶ ω0 = π/6 ⇒ T = 12 : cycle annuel pour des données mensuelles

▶ ω0 ≈ 0 ⇒ T → ∞ : composante de très basse fréquence (tendance)
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Identification des cycles

▶ En pratique, on estime f(ω) à partir des données (périodogramme) et on
recherche les pics.

▶ Les hautes fréquences (ω proche de π) correspondent aux fluctuations rapides,
de courte période.

▶ Les basses fréquences (ω proche de 0) correspondent aux mouvements lents, de
longue période.

▶ Un processus avec f(ω) concentré près de ω = 0 est persistant : les chocs ont des
effets durables.

▶ Un processus avec f(ω) concentré près de ω = π est antipersistant : tendance au
retour à la moyenne rapide.
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Densité spectrale d’une transformation linéaire

▶ Soit (Xt, t ∈ Z) un processus stationnaire de densité spectrale fX(ω). Soit (ai)i≥0

une suite absolument sommable. Alors le processus (Yt, t ∈ Z) défini par :

Yt =

∞∑
i=0

aiXt−i

a pour densité spectrale :

fY (ω) =

∣∣∣∣∣
∞∑
i=0

aie
−iωi

∣∣∣∣∣
2

fX(ω)

cz e18cd8d – 64/83 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Plan

Introduction aux processus stochastiques

Stationnarité

Moments d’un processus stationnaire

Construction de processus stationnaires

Exemple : Processus MA(1)

Fonction d’autocorrélation

Matrice d’autocorrélation et contraintes

Autocorrélation partielle

Densité spectrale

Opérateur retard

cz e18cd8d – 65/83 – 27 janvier 2026

https://creativecommons.org/publicdomain/zero/1.0/deed.fr
https://github.com/stepan-a/time-series


Définition de l’opérateur retard
▶ L’opérateur retard L transforme un processus (Xt, t ∈ Z) en un processus

(Yt, t ∈ Z) tel que :
Yt = LXt = Xt−1

▶ Cet opérateur est linéaire et inversible.

▶ Son inverse est l’opérateur avance F :

Zt = FXt = Xt+1

▶ Par construction : L · F = F · L = 1.

▶ En appliquant plusieurs fois l’opérateur retard :

LkXt = Xt−k
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Polynômes en L

▶ On peut définir des polynômes en L :(
p∑

i=0

aiL
i

)
Xt =

p∑
i=0

aiXt−i

▶ On peut aussi définir des séries en L (ou F ). On doit bien sûr se restreindre à des
processus stationnaires pour que cela ait un sens.

▶ Si (Xt, t ∈ Z) est stationnaire au second ordre et (ai)i≥0 absolument sommable,
alors :

Yt =

∞∑
i=0

aiXt−i =

( ∞∑
i=0

aiL
i

)
Xt

est aussi stationnaire.
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Propriétés des séries en L

▶ Addition : ( ∞∑
i=0

aiL
i +

∞∑
i=0

biL
i

)
Xt =

∞∑
i=0

(ai + bi)L
iXt

où la suite (ai + bi) est absolument sommable.

▶ Multiplication : ( ∞∑
i=0

aiL
i

) ∞∑
j=0

bjL
j

Xt =

∞∑
k=0

ckL
kXt

où ck =
∑k

i=0 aibk−i et la suite (ck) est absolument sommable.
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Démonstration de la multiplication (1/2)
▶ Notons A(L) =

∑∞
i=0 aiL

i et B(L) =
∑∞

j=0 bjL
j .

▶ Calculons A(L)B(L)Xt :

A(L)B(L)Xt = A(L)

 ∞∑
j=0

bjXt−j

 =

∞∑
i=0

ai

∞∑
j=0

bjXt−j−i

▶ En posant k = i+ j et en réorganisant :

A(L)B(L)Xt =

∞∑
k=0

(
k∑

i=0

aibk−i

)
Xt−k =

∞∑
k=0

ckXt−k

où ck =
∑k

i=0 aibk−i est le produit de convolution.
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Démonstration de la multiplication (2/2)
▶ Il reste à montrer que la suite (ck) est absolument sommable.

▶ On a :
∞∑
k=0

|ck| =
∞∑
k=0

∣∣∣∣∣
k∑

i=0

aibk−i

∣∣∣∣∣ ≤
∞∑
k=0

k∑
i=0

|ai||bk−i|

▶ En changeant l’ordre de sommation :

∞∑
k=0

|ck| ≤

( ∞∑
i=0

|ai|

) ∞∑
j=0

|bj |

 < +∞

car (ai) et (bj) sont absolument sommables. □

▶ Le produit de deux séries absolument sommables est absolument sommable :
l’ensemble des séries en L forme une algèbre.
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Inversibilité du polynôme (1− λL)
▶ Le polynôme retard ϕ(L) = 1− λL est inversible dès lors que |λ| < 1.

▶ Démonstration : Posons ai = λi pour i ≥ 0. La suite (ai) est absolument
sommable (série géométrique convergente car |λ| < 1).

▶ En multipliant par ϕ(L) = 1− λL :

(1− λL)

∞∑
i=0

λiLi =
∞∑
i=0

λiLi −
∞∑
i=0

λi+1Li+1

= 1 +

∞∑
i=1

λiLi −
∞∑
i=1

λiLi = 1

▶ Ainsi (1− λL)−1 =
∑∞

i=0 λ
iLi. □
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Interprétation
▶ Soit (Xt, t ∈ Z) un processus stationnaire au second ordre.

▶ Alors le processus (Yt, t ∈ Z) défini par :

Yt =

∞∑
i=0

λiXt−i

est l’unique processus stationnaire au second ordre solution de l’équation :

Zt − λZt−1 = Xt ⇔ (1− λL)Zt = Xt

▶ Il existe d’autres solutions (une infinité), mais elles ne sont pas stationnaires au
second ordre.

▶ Analogie : un = λun−1 + b a une unique solution constante : u∗ = b
1−λ .
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Inversion d’un polynôme général

▶ Soit la fonction polynomiale :

ϕ(z) = 1 + ϕ1z + ϕ2z
2 + · · ·+ ϕpz

p

dont les racines zj = 1
λj

sont plus grandes que 1 en module.

▶ Il existe une série ψ(z) =
∑∞

i=0 ψiz
i telle que ϕ(z) · ψ(z) = 1.

▶ Le polynôme retard ϕ(L) = 1 + ϕ1L+ ϕ2L
2 + · · ·+ ϕpL

p est inversible et admet
pour inverse ψ(L).
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Méthode d’inversion par identification (1/2)

▶ On cherche ψ(z) =
∑∞

i=0 ψiz
i tel que ϕ(z) · ψ(z) = 1.

▶ Développons le produit :

(1 + ϕ1z + ϕ2z
2 + · · ·+ ϕpz

p)(ψ0 + ψ1z + ψ2z
2 + · · · ) = 1

▶ En regroupant par puissances de z :

z0 : ψ0 = 1

z1 : ψ1 + ϕ1ψ0 = 0 ⇒ ψ1 = −ϕ1
z2 : ψ2 + ϕ1ψ1 + ϕ2ψ0 = 0 ⇒ ψ2 = −ϕ1ψ1 − ϕ2
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Méthode d’inversion par identification (2/2)
▶ Formule de récurrence générale : Pour k ≥ 1 :

ψk = −
min(k,p)∑

j=1

ϕjψk−j

avec la convention ψ0 = 1 et ϕj = 0 pour j > p.

▶ Exemple : Pour ϕ(L) = 1− 0.8L (AR(1) avec ϕ1 = −0.8) :

ψ0 = 1

ψ1 = −(−0.8) · 1 = 0.8

ψ2 = −(−0.8) · 0.8 = 0.64 = 0.82

ψk = 0.8k

▶ On retrouve (1− 0.8L)−1 =
∑∞

k=0 0.8
kLk.
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Cas des racines unitaires : le problème

▶ Que se passe-t-il si le polynôme ϕ(z) admet une ou plusieurs racines de module 1
(racines unitaires) ?

▶ Si ϕ(z) admet une racine z0 avec |z0| = 1, alors le polynôme retard ϕ(L) n’est pas
inversible au sens usuel : il n’existe pas de série ψ(L) =

∑∞
i=0 ψiL

i avec (ψi)
absolument sommable telle que ϕ(L)ψ(L) = 1.

▶ Exemple : Le polynôme ϕ(L) = 1− L a pour racine z = 1 (racine unitaire).

▶ L’inverse formel serait
∑∞

i=0 L
i, mais la suite (1, 1, 1, . . .) n’est pas absolument

sommable.
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Factorisation avec racines unitaires
▶ Supposons que ϕ(z) admette k racines unitaires. On peut factoriser :

ϕ(z) = (1− z)kϕ̃(z)

où ϕ̃(z) est un polynôme dont toutes les racines sont de module > 1.

▶ En termes d’opérateur retard :

ϕ(L) = (1− L)kϕ̃(L)

▶ Remarques :
▶ (1− L) est l’opérateur de différenciation : (1− L)Xt = Xt −Xt−1 = ∆Xt

▶ (1− L)k correspond à la différenciation d’ordre k : ∆kXt

▶ ϕ̃(L) est inversible car ses racines sont de module > 1
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Inversion partielle
▶ Bien que ϕ(L) ne soit pas globalement inversible, on peut écrire :

ϕ(L) = (1− L)kϕ̃(L)

et inverser la partie ϕ̃(L) :

ϕ̃(L)−1 = ψ̃(L) =

∞∑
i=0

ψ̃iL
i

avec (ψ̃i) absolument sommable.

▶ Si ϕ(L)Yt = Xt, alors :

(1− L)kϕ̃(L)Yt = Xt ⇒ (1− L)kYt = ψ̃(L)Xt

▶ On peut exprimer ∆kYt en fonction de Xt, mais pas Yt directement.
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Processus intégrés

▶ Un processus (Yt) est dit intégré d’ordre k, noté Yt ∼ I(k), si :
▶ Yt n’est pas stationnaire

▶ ∆kYt = (1− L)kYt est stationnaire

▶ Exemple : La marche aléatoire Yt = Yt−1 + εt où εt ∼ BB(0, σ2).

▶ On a (1− L)Yt = εt, donc ∆Yt = εt est stationnaire. Ainsi Yt ∼ I(1).

▶ De nombreuses séries économiques (PIB, prix, indices boursiers) sont I(1) : leur
niveau n’est pas stationnaire, mais leur taux de croissance l’est.
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Résolution avec racines unitaires
▶ Si ϕ(L) a k racines unitaires, on ne peut pas inverser ϕ(L) directement, mais on

peut :

▶ 1. Différencier le processus k fois pour éliminer les racines unitaires :

ϕ(L)Yt = Xt ⇒ ϕ̃(L)∆kYt = Xt

▶ 2. Inverser ϕ̃(L) (qui n’a plus de racines unitaires) :

∆kYt = ψ̃(L)Xt =
∞∑
i=0

ψ̃iXt−i

▶ 3. Intégrer k fois pour retrouver Yt (avec k constantes d’intégration).
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Interprétation des constantes d’intégration
▶ L’intégration introduit k constantes d’intégration qui correspondent aux

conditions initiales.

▶ Exemple pour k = 1 : Si ∆Yt = Zt où Zt est connu, alors :

Yt = Y0 +

t∑
s=1

Zs

La constante Y0 est la condition initiale.

▶ Exemple pour k = 2 : Si ∆2Yt = Zt, alors :

Yt = Y0 + t ·∆Y0 +
t∑

s=1

(t− s+ 1)Zs

▶ Ces conditions initiales déterminent le niveau du processus mais n’affectent pas sa
dynamique.
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Conclusion sur les racines unitaires

▶ Les racines unitaires empêchent l’inversion directe mais permettent une
représentation du processus différencié. C’est la base de l’analyse des séries non
stationnaires.

▶ Points clés :
▶ Un polynôme avec k racines unitaires ne peut pas être inversé en une série

absolument sommable

▶ On factorise : ϕ(L) = (1− L)kϕ̃(L) où ϕ̃(L) est inversible

▶ Le processus différencié ∆kYt admet une représentation stationnaire

▶ Les k conditions initiales déterminent le niveau mais pas la dynamique
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Résumé

▶ Un processus stochastique est une suite de variables aléatoires.

▶ La stationnarité (au second ordre) simplifie considérablement l’inférence.

▶ La fonction d’autocovariance γ(h) caractérise les dépendances.

▶ La fonction d’autocorrélation ρ(h) = γ(h)/γ(0) normalise les dépendances.

▶ L’autocorrélation partielle r(K) mesure le lien direct entre Xt et Xt−K .

▶ La densité spectrale f(ω) donne une vision fréquentielle équivalente.

▶ L’opérateur retard L permet une écriture compacte des modèles.
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