ÉCONOMÉTRIE APPROFONDIE

Mercredi 18 décembre 2023

Les réponses non commentées ou insuffisamment détaillées ne seront pas considérées. Prenez le temps de faire des phrase.

EXERCICE 1. On suppose que les données sont générées par le modèle suivant :

$$y_i = x_{1,i}\beta_1 + \dots x_{K,i}\beta_K + \varepsilon_i$$

où $x_{k,i}$, pour $k=1,\ldots,K$ sont des variables explicatives déterministes, β_k , pour $k=1,\ldots,K$, sont des paramètres réels, ε_i une variable aléatoire centrée de variance σ_ε^2 . (1) Expliciter les matrices et vecteurs dans la représentation matricielle équivalente du modèle :

$$Y = X\beta + \varepsilon$$

(2) Définir et donner l'expression de l'estimateur des MCO de β (en montrant comment on arrive à cette expression et en explicitant les hypothèses nécessaires pour que cet estimateur existe). (3) Montrer que cet estimateur est sans biais. (4) Calculer la variance de cet estimateur. (5) Pourquoi l'estimateur des MCO a t-il une variance?

EXERCICE 2. On suppose que les données sont générées par le modèle suivant :

$$y_i = \beta_0 + x_i \beta_1 + \varepsilon_i, \quad i = 1, \dots, N$$

où x_i est une variable explicative déterministe, β_0 et β_1 sont des paramètres réels, ε_i une variable aléatoire centrée de variance $\sigma_{i,\varepsilon}^2 = \sigma^2 z_i^2$ où z_i est une variable observée. Le modèle empirique est :

$$y_i = b_0 + x_i b_1 + \epsilon_i, \quad i = 1, \dots, N$$

(1) Calculer l'estimateur des MCO de b_1 , que nous noterons \hat{b}_1 . (2) Calculer l'espérance de l'estimateur des MCO. S'agit-il d'un estimateur sans biais de β_1 ? (3) Calculer la variance de \hat{b}_1 . (4) Cet estimateur est-il efficace? Pourquoi? (5) Définir et calculer l'estimateur des MCG de b_1 que nous noterons \tilde{b}_1 . (6) Cet estimateur est-il sans biais? (7) Calculer la variance de \tilde{b}_1 . (8) Comparer les variances de \hat{b}_1 et \tilde{b}_1 .

EXERCICE 3. On considère le modèle suivant :

$$y_i = \beta_0 + x_i^{\star} \beta_1 + \varepsilon_i$$

pour $i=1,\ldots,N$ avec β_0 et β_1 des paramètres réels, ε_i une variable aléatoire réelle iid d'espérance nulle et de variance

 σ_{ε}^2 , x_i^{\star} une variable explicative aléatoire iid variances σ_u^2 et σ_v^2 et non corrélées, qui de variance $\sigma_{x^*}^2$. Malheureusement, la variable explicative est observée avec erreur, on n'observe pas x_i^{\star} mais :

$$x_i = x_i^{\star} + \nu_i$$

avec ν_i une variable aléaoire d'espérance nulle, de variance σ_{ν}^2 et non corrélée ε_i ou x_i^{\star} . Le modèle empirique est:

$$y_i = b_0 + x_i b_1 + \epsilon_i$$

(1) Écrire le modèle générateur des données en exprimant y_i en fonction de x_i . Une estimation par les MCO peut-elle fournir un estimateur sans biais de β_1 ? Pourquoi? (2) Ecrire l'expression de b_1 . (3) Calculer la variance de x que nous noterons σ_x^2 . (4) Déterminer le comportement asymptotique des statistiques suivantes:

Survantes.
$$N^{-1} \sum_{i=1}^{N} (x_i - \bar{x})^2,$$

$$N^{-1} \sum_{i=1}^{N} (x_i - \bar{x}) (\varepsilon_i - \bar{\varepsilon}),$$

$$N^{-1} \sum_{i=1}^{N} (x_i^{\star} - \bar{x}^{\star}) (\nu_i - \bar{\nu}), \text{ et }$$

$$N^{-1} \sum_{i=1}^{N} (\nu_i - \bar{\nu})^2$$

(5) Montrer que :

$$\mathsf{plim}_{N\to\infty}\hat{b}_1 = \beta_1 \left(1 - \frac{\sigma_\nu^2}{\sigma_{x^\star}^2 + \sigma_\nu^2} \right)$$

Interpréter et commenter ce résultat.

EXERCICE 4. Sur le marché d'un bien la demande et l'offre à la date t sont données par:

$$\begin{cases} y_t^d = \alpha + \beta P_t + u_t \\ y_t^o = \gamma + \delta P_t + v_t \end{cases}$$
 (1)

où y_t^d et y_t^o mesurent la demande et l'offre de bien, P_t le prix du bien, u_t et v_t sont des variables aléatoires iid, centrées, de s'interprètent comme des chocs de demande et d'offre. Le système d'équation 1 est le modèle structurel. α , β , γ et δ les paramètres structurels, u_t et v_t les chocs structurels.

L'économètre observe les quantités échangées et les prix, on suppose que le marché est équilibré à chaque date. (1) Montrer qu'à l'équilibre on doit avoir :

$$\begin{cases} y_t &= \mu_y + \varepsilon_{y,t} \\ P_t &= \mu_P + \varepsilon_{P,t} \end{cases}$$
 (2)

en définissant explicitement μ_y et μ_P en fonction des paramètres structurels, $\varepsilon_{y,t}$ et $\varepsilon_{P,t}$ en fonction des chocs et paramètres structurels. Le système d'équation 2 est le modèle réduit, μ_y et μ_P les paramètres réduits, $\varepsilon_{y,t}$ et $\varepsilon_{P,t}$ les chocs réduits. (2) Est-il possible d'estimer sans biais les paramètres réduits μ_y et μ_P ? Donner les expressions des estimateurs. (3) Est-il possible de déduire les paramètres structurels à partir des paramètres réduits?

Un économètre souhaite estimer la fonction de demande en régressant les quantités échangées, y_t , sur les prix observés, P_t . Le modèle empirique est :

$$y_t = a + bP_t + \epsilon_t, \quad t = 1, \dots, T$$

(4) Calculer la covariance entre P_t et u_t . Que peut-on en déduire sur les propriétés de l'estimateur des MCO? (5) Calculer (1) l'estimateur des MCO *b* et montrer que :

$$\operatorname{plim}_{T o \infty} \hat{b} = rac{\sigma_v^2 eta + \sigma_u^2 \delta}{\sigma_v^2 + \sigma_u^2}$$

Interpréter et commenter ce résultat.